Skip to main content
Log in

Studies of the effect of environmental factors on the rotifer predator–prey system in freshwater

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The aim of this work is to evaluate the effect of environmental factors: temperature and photoperiod on the zooplankton predator–prey system. Rotifers, an important and cosmopolitan group of zooplankton in freshwater, were used in our study. We investigated the effect of temperature (20, 23, and 30°C) and of photoperiod (L:D = 12:0 and 0:12) on the predatory rotifer Asplanchna brightwelli consuming rotifer Brachionus calyciflorus as prey. Under A. brightwelli predation, populations of B. calyciflorus prey were consumed more slowly at 20 ± 1 and 30 ± 1°C as compared to 23 ± 1°C. Prey consumption by A. brightwelli increased from 0.63 ± 0.09 ind. predator−1 at 20°C to a peak of 1.22 ± 0.12 ind. predator−1 at 23°C, then decreased significantly to 0.93 ± 0.14 ind. predator−1 at 30 ± 1°C. In addition, predation responded to temperature changing sensitively and rapidly. Statistical analysis showed that the prey consumption were significant different under altered temperature periods during 12 h. Photoperiod also significantly influenced the rate of A. brighwelli predation. B. calyciflorus suffered less predation in darkness than in light. The rate of prey consumption in light (1.06 ind. predator−1) was twice the average of that in darkness (0.51 ind. predator−1). Furthermore, predation rate varied under changing photoperiod but predators moved back into the light did not resume their original consumption rate. Our results demonstrate that whether the predation in rotifer successfully or not is strongly influenced by temperature and photoperiod.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Birky, C. W. Jr., 1964. Studies on the physiology and genetics of the rotifer, Asplanchna. I. Methods and physiology. Journal of Experimental Zoology 155: 273–291.

    Article  Google Scholar 

  • Brandl, Z., 2005. Freshwater copepods and rotifers: predators and their prey. Hydrobiologia 546: 475–489.

    Article  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Article  CAS  PubMed  Google Scholar 

  • Clément, P., 1977. Phototaxis in rotifers (action spectra). Archiv für Hydrobiologie-Beiheft Ergebnisse der Limnologie 8: 47–49.

    Google Scholar 

  • Clément, P., E. Wurdak & J. Amsellem, 1983. Behavior and ultrastructure of sensory organs in rotifers. Hydrobiologia 104: 89–129.

    Article  Google Scholar 

  • Conde-Porcuna, J. M. & S. S. S. Sarma, 1995. Prey selection by Asplanchna girodi (Rotifera): the importance of prey defence mechanisms. Freshwater Biology 33: 341–348.

    Article  Google Scholar 

  • Cornillac, A. M., 1982. Yeux cerebraux et reponses motrices a la lumierechez Brachionus calyciflorus et Asplanchna brightwelli (rotiferes). Doctor Thesis, Lyon I University, Villeurbanne.

  • Coulon, P. Y., J. P. Charras, J. L. Chassé, P. Clément, A. Cornillac, A. Luciani & E. Wurdak, 1983. An experimental system for the automatic tracking and analysis of rotifer swimming behaviour. Hydrobiologia 104: 197–202.

    Article  Google Scholar 

  • De Beauchamp, P., 1952. Un facteur de la variabilite chez les rotifere du genre Brachionus. Comptes Rendus Hebdomadaires des Seances de L’Academie des Sciences 234: 573–575.

    Google Scholar 

  • Epp, R. W. & W. M. Lewis, 1984. Cost and speed of locomotion for rotifers. Oecologia 61: 289–292.

    Article  Google Scholar 

  • Gerritsen, J., 1980. Adaptive responses to encounter problem. In Kerfoot, W. C. (ed.), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover: 52–62.

    Google Scholar 

  • Gerritsen, J. & J. R. Strickler, 1977. Encounter probabilities and community structure in zooplankton: a mathematical model. Journal Fisheries Research Board of Canada 34: 73–82.

    Google Scholar 

  • Gilbert, J. J., 1966. Rotifer ecology and embryological induction. Science 151: 1234–1237.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, J. J., 1967. Asplanchna and postero-lateral spine production in Brachionus calyciflorus. Archiv Fur Hydrobiologie 64: 1–62.

    Google Scholar 

  • Gilbert, J. J., 1976. Selective cannibalism in the Rotifer Asplanchna sieboldi: contact recognition of morphotype and clone. Proceedings of the National Academy of Sciences of the United States of America 73: 3233–3237.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, J. J., 1977. Control of feeding behavior and selective cannibalism in the rotifer Asplanchna. Freshwater Biology 7: 337–341.

    Article  Google Scholar 

  • Gilbert, J. J., 1978. Selective feeding and its effect on polymorphism and sexuality in the rotifer Asplanchna sieboldi. Freshwater Biology 8: 43–50.

    Article  Google Scholar 

  • Gilbert, J. J., 1980. Feeding in the rotifer Asplanchna: Behaviour, cannibalism, selectivity, prey defenses and impact on rotifer communities. In Kerfoot, W. C. (ed.), Evolution and Ecology of Zooplankton Communities. The University Press of New England, Hanover: 158–172.

    Google Scholar 

  • Gilbert, J. J. & R. S. Stemberger, 1984. Asplanchna-induced polymorphism in the rotifer Keratella slacki. Limnology and Oceanography 29: 1309–1316.

    Article  Google Scholar 

  • Guo, R., 2009. Ecological strategy of rotifer (Brachionus calyciflorus) under predative and competitive stress. Master Thesis, Nanjing Normal University, Nanjing.

  • Halbach, U., 1971. The adaptive value of cyclomorphic spine production in Brachionus calyciflorus Pallas (Rotatoria) I. Predator-prey relationships in short term experiments. Oecologia 6: 267–288.

    Article  Google Scholar 

  • Hampton, S. E., J. J. Gilbert & C. W. Burns, 2000. Direct and indirect effects of juvenile Buenoa macrotibialis (Hemiptera: Notonectidae) on the zooplankton of a shallow pond. Limnology and Oceanography 45: 1006–1012.

    Article  Google Scholar 

  • Hampton, S. E. & P. L. Starkweather, 1998. Differences in predation among morphotypes of the rotifer Asplanchna silvestrii. Freshwater Biology 40: 595–605.

    Article  Google Scholar 

  • Havel, J. E., 1987. Predator-induced defenses: a review. In Kerfoot, W. C. & A. Sih (eds), Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover: 263–278.

    Google Scholar 

  • Holling, C. S., 1965. The functional response of predators to prey density and its role in mimicry and population regulation. Entomological Society of Canada 45: 1–60.

    Google Scholar 

  • Ives, A. R. & A. P. Dobson, 1987. Antipredator behavior and the population dynamics of simple predator-prey systems. The American Naturalist 130: 431–447.

    Article  Google Scholar 

  • Jennings, H. S., 1901. On the significance of the spiral swimming of organisms. American Naturalist 35: 369–378.

    Article  Google Scholar 

  • Kerfoot, W. C. & A. Sih, 1987. Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover.

    Google Scholar 

  • Kumar, R. & T. R. Rao, 2001. Effect of the cyclopoid copepod Mesocyclops thermocyclopoides on the interactions between the predatory rotifer Asplanchna intermedia and its prey Brachionus calyciflorus and B. angularis. Hydrobiologia 453: 261–268.

    Article  Google Scholar 

  • Lynch, M., 1979. Predation, competition, and zooplankton community structure: an experimental study. Limnology and Oceanography 24: 253–272.

    Article  Google Scholar 

  • Maly, E. J., 1969. A laboratory study of the interaction between the predatory rotifer Asplanchna and Paramecium. Ecology 50: 59–73.

    Article  Google Scholar 

  • Mimouni, P., A. Luciani & P. Clément, 1993. How females of the rotifer Asplanchna brightwelli swim in darkness and light: an automated tracking study. Hydrobiologia 255–256: 101–108.

    Article  Google Scholar 

  • Nandini, S. & S. S. S. Sarma, 2000. Life-table demography of four cladoceran species in relation to algal food (Chlorella vulgaris) density. Hydrobiologia 491: 211–219.

    Article  Google Scholar 

  • Nandini, S., R. Perez-Chavez & S. S. S. Sarma, 2003. The effect of prey morphology on the feeding behaviour and population growth of the predatory rotifer Asplanchna sieboldi: a case study using five species of Brachionus (Rotifera). Freshwater Biology 48: 2131–2140.

    Article  Google Scholar 

  • Nandini, S., D. D. Chaparro-Herrera, S. L. Cardenas-Arriola & S. S. S. Sarma, 2007. Population growth of Brachionus macracanthus (Rotifera) in relation to cadmium toxicity: influence of algal (Chlorella vulgarris) density. Journal of Environmental Science and Health Part A 42: 1467–1472.

    Article  CAS  Google Scholar 

  • Pourriot, R., 1964. Etude experimentale de variations mophologiques chez certaines especes de rotiferes. Bulletin de la Society Zoologique de France 89: 555–561.

    Google Scholar 

  • Pourriot, R., 1977. Food and feeding habits of rotifers. Archiv Fur Hydrobiologie 8: 234–260.

    Google Scholar 

  • Preston, B. L., G. Cecchine & T. W. Snell, 1999. Effect of pentachlorophenol on predator avoidance behavior of the rotifer Brachionus calyciflorus. Aquatic Toxicology 44: 201–212.

    Article  CAS  Google Scholar 

  • Salt, G. W., 1967. Predation in an experimental protozoan population (Woodruffia-Paramecium). Ecological Monographs 37: 113–144.

    Article  Google Scholar 

  • Salt, G. W., 1987. The components of feeding behavior in rotifers. Hydrobiologia 147: 271–281.

    Article  Google Scholar 

  • Sarma, S. S. S., 1993. Feeding responses of Asplanchna brightwelli (rotifera): laboratory and field studies. Hydrobiologia 255–256: 275–282.

    Article  Google Scholar 

  • Sarma, S. S. S. & T. R. Rao, 1991. The combined effects of food and temperature on the life history parameters of Brachionus patulus Muller (Rotifera). International Review of Hydrobiology 76: 225–239.

    Article  Google Scholar 

  • Sarma, S. S. S. & S. Nandini, 2007. Small prey size offers immunity to predation a case study on two species of Asplanchna and three Brachionid prey (Rotifera). Hydrobiologia 593: 67–76.

    Article  Google Scholar 

  • Sarma, S. S. S., E. L. Pavon-Meza & S. Nandini, 2003. Comparative population growth and life table demography of the rotifer Asplanchna girodi at different prey (Brachionus calyciflorus and Brachionus havanaensis) (Rotifera) densities. Hydrobiologia 491: 309–320.

    Article  Google Scholar 

  • Snell, T. W., 1998. Chemical ecology of rotifers. Hydrobiologia 387(388): 267–276.

    Article  Google Scholar 

  • Snell, T. W., M. J. Childress, E. M. Boyer & F. H. Hoff, 1987. Assessing the status of rotifer mass culture. Journal of the World Aquaculture Society 18: 27–277.

    Article  Google Scholar 

  • Stemberger, R. S. & J. J. Gilbert, 1987. Defenses of planktonic rotifers against predators. In Kerfoot, W. D. & A. Sih (eds), Predation: Direct and Indirect Impact on Aquatic Communities. University Press of New England, Hanover: 227–239.

    Google Scholar 

  • Tollrian, R. & C. D. Harvell, 1999. The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton.

    Google Scholar 

  • Viaud, G., 1940. Recherches experimentales sur le phototropisme des Rotiferes. I. Biological Bulletin 74: 249–308.

    Google Scholar 

  • Viaud, G., 1943. Recherches experimentales sur le phototropisme des Rotiferes. II. Biological Bulletin 77: 69–93.

    Google Scholar 

  • Wallace, R. L. & T. W. Snell, 2001. Rotifera. In Thorp, J. & A. Covich (eds), Ecology and Classifications of North American Freshwater Invertebrates. Academic Press, New York: 195–254.

    Chapter  Google Scholar 

  • Williamson, C. E., 1983. Invertebrate predation of planktonic rotifers. Hydrobiologia 104: 385–396.

    Article  Google Scholar 

  • Wootton, T., 2005. Measurement of interaction strength in nature. Annual review of ecology, evolution and systematics 36: 419–444.

    Article  Google Scholar 

  • Yin, X. W. & C. J. Niu, 2008. Predatory rotifer Asplanchna brightwellii mediated competition outcome between Brachionus calyciflorus and Brachionus patulus (Rotifera). Hydrobiologia 610: 131–138.

    Article  Google Scholar 

  • Yufera, M., E. Pascual & J. M. Olivares, 2005. Factors affecting swimming speed in the rotifer Brachionus plicatilis. Hydrobiologia 546: 375–380.

    Article  Google Scholar 

  • Zhang, Z. S. & X. F. Huang, 1991. Method for Study on Freshwater Plankton. Science Press, Beijing (in Chinese).

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (30371093 and 30570260) and Natural Science Foundation of Jiangsu Province of China (BK2007225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxin Yang.

Additional information

Handling editor: K. E. Havens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, R., Snell, T.W. & Yang, J. Studies of the effect of environmental factors on the rotifer predator–prey system in freshwater. Hydrobiologia 655, 49–60 (2010). https://doi.org/10.1007/s10750-010-0403-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0403-8

Keywords

Navigation