Skip to main content
Log in

Impact of olfactory non-host predator cues on aggregation behaviour and activity in Polymorphus minutus infected Gammarus pulex

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Parasites with a complex life cycle are supposed to influence the behaviour of their intermediate host in such a way that the transmission to the final host is enhanced, but reduced to non-hosts. Here, we examined whether the trophically transmitted bird parasite Polymorphus minutus increases the antipredator response of its intermediate host, the freshwater amphipod Gammarus pulex to fish cues, i.e. non-host cues (‘increased host abilities hypothesis’). Aggregation behaviour and reduced activity are assumed to decrease the predation risk of gammarids by fishes. Uninfected G. pulex are known to aggregate in the presence of a fish predator. In the present study, gammarids were allowed to choose either to join a group of conspecifics or to stay solitary (experiment 1) or between two groups differing in infection status (experiment 2), both in the presence or absence of fish odour. The perception of the groups was limited to mainly olfactory cues. Contrary to the ‘increased host abilities hypothesis’, in infected gammarids of experiment 1, fish cues induced similar aggregation behaviour as in their uninfected conspecifics. In experiment 2, uninfected as well as infected gammarids did not significantly discriminate between infected and uninfected groups. Although only uninfected gammarids reduced their activity in the presence of predator cues, infected G. pulex were generally less active than uninfected conspecifics. This might suggest that P. minutus manipulates rather the general anti-predator behaviour than the plastic response to predation risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andersson, K. G., C. Brönmark, J. Herrmann, B. Malmqvist, C. Otto & P. Sjörström, 1986. Presence of sculpins (Cottus gobio) reduces drift and activity of Gammarus pulex (Amphipoda). Hydrobiologia 133: 209–215.

    Article  Google Scholar 

  • Bakker, T. C. M., D. Mazzi & S. Zala, 1997. Parasite-induced changes in behavior and color make Gammarus pulex more prone to fish predation. Ecology 78: 1098–1104.

    Google Scholar 

  • Baldauf, S. A., T. Thünken, J. G. Frommen, T. C. M. Bakker, O. Heupel & H. Kullmann, 2007. Infection with an acanthocephalan manipulates an amphipod’s reaction to a fish predator’s odours. International Journal for Parasitology 37: 61–65.

    Article  PubMed  Google Scholar 

  • Barber, I., F. A. Huntingford & D. W. T. Crompton, 1995. The effect of hunger and cestode parasitism on the shoaling decisions of small fresh-water fish. Journal of Fish Biology 47: 524–536.

    Article  Google Scholar 

  • Bauer, A., E. R. Haine, M. J. Perrot-Minnot & T. Rigaud, 2005. The acanthocephalan parasite Polymorphus minutus alters the geotactic and clinging behaviours of two sympatric amphipod hosts: the native Gammarus pulex and the invasive Gammarus roeseli. Journal of Zoology 267: 39–43.

    Article  Google Scholar 

  • Baumgärtner, D., A. D. Jungbluth, U. Koch & E. von Elert, 2002. Effects of infochemicals on microhabitat choice by the freshwater amphipod Gammarus roeseli. Archiv für Hydrobiologie 155: 353–367.

    Google Scholar 

  • Benesh, D. P., T. Hasu, O. Seppälä & E. T. Valtonen, 2009. Seasonal changes in host phenotype manipulation by an acanthocephalan: time to be transmitted? Parasitology 136: 219–230.

    Article  CAS  PubMed  Google Scholar 

  • Bethel, W. M. & J. C. Holmes, 1973. Altered evasive behavior and responses to light in amphipods harboring acanthocephalan cystacanths. Journal of Parasitology 59: 945–956.

    Article  Google Scholar 

  • Brock, V. E. & R. H. Riffenburgh, 1960. Fish schooling: a possible factor in reducing predation. Journal du Conseil, Conseil International pour l’Exploration de la Mer 25: 307–317.

    Google Scholar 

  • Brown, A. F. & D. Pascoe, 1989. Parasitism and host sensitivity to cadmium – an acanthocephalan infection of fresh-water amphipod Gammarus pulex. Journal of Applied Ecology 26: 473–487.

    Article  CAS  Google Scholar 

  • Cézilly, F., A. Gregoire & A. Bertin, 2000. Conflict between co-occurring manipulative parasites? An experimental study of the joint influence of two acanthocephalan parasites on the behaviour of Gammarus pulex. Parasitology 120: 625–630.

    Article  PubMed  Google Scholar 

  • Crawley, M. J., 2005. Statistics: An Introduction Using R. Chichester (United Kingdom). Wiley, Chichester, UK.

    Google Scholar 

  • Crompton, D. W. T. & B. B. Nickol, 1985. Biology of the Acanthocephala. Cambridge University Press, Cambridge.

    Google Scholar 

  • Dahl, J., P. A. Nilsson & L. B. Pettersson, 1998. Against the flow: chemical detection of downstream predators in running waters. Proceedings of the Royal Society of London Series B 265: 1339–1344.

  • Dezfuli, B. S., B. J. Maynard & T. A. Wellnitz, 2003. Activity levels and predator detection by amphipods infected with an acanthocephalan parasite, Pomphorhynchus laevis. Folia Parasitologica 50: 129–134.

    PubMed  Google Scholar 

  • Engqvist, L., 2005. The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Animal Behaviour 70: 967–971.

    Article  Google Scholar 

  • Frommen, J. G., M. Hiermes & T. C. M. Bakker, 2009. Disentangling the effects of group size and density on shoaling decisions of three-spined sticklebacks (Gasterosteus aculeatus). Behavioural Ecology and Sociobiology 63: 1141–1148.

    Article  Google Scholar 

  • Gerritsen, J. & J. R. Strickler, 1977. Encounter probabilities and community structure in zooplankton: a mathematical model. Journal of the Fisheries Research Board of Canada 34: 73–82.

    Google Scholar 

  • Jakobsen, P. J. & C. Wedekind, 1998. Copepod reaction to odor stimuli influenced by cestode infection. Behavioral Ecology 9: 414–418.

    Article  Google Scholar 

  • Kaldonski, N., M. J. Perrot-Minnot & F. Cezilly, 2007. Differential influence of two acanthocephalan parasites on the antipredator behaviour of their common intermediate host. Animal Behaviour 74: 1311–1317.

    Article  Google Scholar 

  • Kaldonski, N., M. J. Perrot-Minnot, S. Motreuil & F. Cézilly, 2008. Infection with acanthocephalans increases the vulnerability of Gammarus pulex (Crustacea, Arnphipoda) to non-host invertebrate predators. Parasitology 135: 627–632.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy, C. R., P. F. Broughton & P. M. Hine, 1978. Status of brown and rainbow trout, Salmo trutta and S. gairdneri as hosts of acanthocephalan, Pomphorhynchus laevis. Journal of Fish Biology 13: 265–275.

    Article  Google Scholar 

  • Krakauer, D. C., 1995. Groups confuse predators by exploiting perceptual bottlenecks – a connectionist model of the confusion effect. Behavioral Ecology and Sociobiology 36: 421–429.

    Article  Google Scholar 

  • Krang, A. S. & S. P. Baden, 2004. The ability of the amphipod Corophium volutator (Pallas) to follow chemical signals from con-specifics. Journal of Experimental Marine Biology and Ecology 310: 195–206.

    Article  CAS  Google Scholar 

  • Krause, J. & J.-G. J. Godin, 1994. Shoal choice in the banded killifish (Fundulus diaphanus, Teleostei, Cyprinodontidae) – effects of predation risk, fish size, species composition and size of shoals. Ethology 98: 128–136.

    Article  Google Scholar 

  • Krause, J. & G. D. Ruxton, 2002. Living in Groups. Oxford University Press, Oxford.

    Google Scholar 

  • Krause, J., J.-G. J. Godin & D. Brown, 1996. Phenotypic variability within and between fish shoals. Ecology 77: 1586–1591.

    Article  Google Scholar 

  • Kullmann, H., T. Thünken, S. A. Baldauf, T. C. M. Bakker & J. G. Frommen, 2008. Fish odour triggers conspecific attraction behaviour in an aquatic invertebrate. Biology Letters 4: 458–460.

    Article  PubMed  Google Scholar 

  • Landeau, L. & J. Terborgh, 1986. Oddity and the ‘confusion effect’ in predation. Animal Behaviour 34: 1372–1380.

    Article  Google Scholar 

  • Lefèvre, T., C. Lebarbenchon, M. Gauthier-Clerc, D. Missé, R. Poulin & F. Thomas, 2009. The ecological significance of manipulative parasites. Trends in Ecology and Evolution 24: 41–48.

    Article  PubMed  Google Scholar 

  • Magurran, A. E., 1990. The adaptive significance of schooling as an anti-predator defence in fish. Annales Zoologici Fennici 27: 51–66.

    Google Scholar 

  • Maynard, B. J., T. A. Wellnitz, N. Zanini, W. G. Wright & B. S. Dezfuli, 1998. Parasite-altered behavior in a crustacean intermediate host: field and laboratory studies. Journal of Parasitology 84: 1102–1106.

    Article  CAS  PubMed  Google Scholar 

  • Mazzi, D. & T. C. M. Bakker, 2003. A predator’s dilemma: prey choice and parasite susceptibility in three-spined sticklebacks. Parasitology 126: 339–347.

    Article  CAS  PubMed  Google Scholar 

  • McCahon, C. P., A. F. Brown & D. Pascoe, 1988. The effect of the acanthocephalan Pomphorhynchus laevis (Müller 1776) on the acute toxicity of cadmium to its intermediate host, the amphipod Gammarus pulex (L). Archives of Environmental Contamination and Toxicology 17: 239–243.

    Article  CAS  Google Scholar 

  • Médoc, V. & J. N. Beisel, 2008. An Acanthocephalan parasite boosts the escape performance of its intermediate host facing non-host predators. Parasitology 135: 1977–1984.

    Article  Google Scholar 

  • Médoc, V. & J. N. Beisel, 2009. Field evidence for non-host predator avoidance in a manipulated amphipod. Naturwissenschaften 96: 513–523.

    Article  PubMed  Google Scholar 

  • Médoc, V., L. Bollache & J. N. Beisel, 2006. Host manipulation of a freshwater crustacean (Gammarus roeseli) by an acanthocephalan parasite (Polymorphus minutus) in a biological invasion context. International Journal for Parasitology 36: 1351–1358.

    Article  PubMed  Google Scholar 

  • Médoc, V., T. Rigaud, L. Bollache & J. N. Beisel, 2009. A manipulative parasite increasing an antipredator response decreases its vulnerability to a nonhost predator. Animal Behaviour 77: 1235–1241.

    Google Scholar 

  • Moore, J., 2002. Parasites and the Behaviour of Animals. Oxford University Press, Oxford.

    Google Scholar 

  • Perrot-Minnot, M. J., N. Kaldonski & F. Cezilly, 2007. Increased susceptibility to predation and altered anti-predator behaviour in an acanthocephalan-infected amphipod. International Journal for Parasitology 37: 645–651.

    Article  PubMed  Google Scholar 

  • Pitcher, T. J. & J. K. Parrish, 1993. Functions of shoaling behaviour in teleosts. In Pitcher, T. J. (ed.), The Behaviour of Teleost Fishes. Croom Helm, London: 363–439.

    Google Scholar 

  • Poulin, R., 1994. Meta-analysis of parasite-induced behavioural changes. Animal Behaviour 48: 137–146.

    Article  Google Scholar 

  • Poulton, M. J. & D. J. Thompson, 1987. The effects of the acanthocephalan parasite Pomphorhynchus laevis on mate choice in Gammarus pulex. Animal Behaviour 35: 1577–1579.

    Article  Google Scholar 

  • R Development Core Team, 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

  • Roberts, G., 1996. Why individual vigilance declines as group size increases. Animal Behaviour 51: 1077–1086.

    Article  Google Scholar 

  • Theodorakis, C. W., 1989. Size segregation and the effect of oddity on predation risk in minnow schools. Animal Behaviour 38: 496–502.

    Article  Google Scholar 

  • Thomas, F., S. Adamo & J. Moore, 2005. Parasitic manipulation: where are we and where should we go? Behavioural Processes 68: 185–199.

    Article  PubMed  Google Scholar 

  • Ward, A. J. W., A. J. Duff, J. Krause & I. Barber, 2005. Shoaling behaviour of sticklebacks infected with the microsporidian parasite, Glugea anomala. Environmental Biology of Fishes 72: 155–160.

    Article  Google Scholar 

  • Wellnitz, T., L. Giari, B. Maynard & B. S. Dezfuli, 2003. A parasite spatially structures its host population. Oikos 100: 263–268.

    Article  Google Scholar 

  • Welty, J., 1934. Experiments in group behavior of fishes. Physiological Zoology 7: 85–128.

    Google Scholar 

  • Wooster, D. E., 1998. Amphipod (Gammarus minus) responses to predators and predator impact on amphipod density. Oecologia 115: 253–259.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Tobias Ottenheym for assistance in experiment 1. The ‘Bakker’ research-group is acknowledged for discussion. We thank the associated editor and the anonymous referees for their very useful comments on the manuscript. Kathrin Langen is acknowledged for genetic determination of the parasite. The Untere Landschaftsbehörde Bonn kindly allowed taking gammarids from the natural habitat. This study adhered to the Association for the Study of Animal Behaviour/Animal Behaviour Society Guidelines for the Use of Animals in Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian A. Baldauf.

Additional information

Handling editor: S. Stendera

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thünken, T., Baldauf, S.A., Bersau, N. et al. Impact of olfactory non-host predator cues on aggregation behaviour and activity in Polymorphus minutus infected Gammarus pulex . Hydrobiologia 654, 137–145 (2010). https://doi.org/10.1007/s10750-010-0377-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0377-6

Keywords

Navigation