Advertisement

Hydrobiologia

, Volume 654, Issue 1, pp 125–136 | Cite as

What is more important for invertebrate colonization in a stream with low-quality litter inputs: exposure time or leaf species?

  • Raphael Ligeiro
  • Marcelo S. Moretti
  • José Francisco GonçalvesJr.
  • Marcos Callisto
Primary research paper

Abstract

The objective of this study was to evaluate the influences of detritus from the leaves of different species, and of exposure time on invertebrate colonization of leaves in a shaded Cerrado stream. We hypothesized that the exposure time is the main factor that influences the colonization of leaves by invertebrates. We used leaves of five tree species native to the Brazilian Cerrado: Protium heptaphyllum and Protium brasiliense (Burseraceae), Ocotea sp. (Lauraceae), Myrcia guyanensis (Myrtaceae), and Miconia chartacea (Melastomataceae), which are characterized by their toughness and low-nutritional quality. Litter bags, each containing leaves from one species, were placed in a headwater stream and removed after 7, 15, 30, 60, 90, and 120 days. The dominant taxon was Chironomidae, which comprised ca. 52% of all organisms and ca. 20% of the total biomass. The taxonomic richness of colonizing organisms did not vary among the leaf species. However, the density and biomass of the associated organisms varied differently among the kinds of detritus during the course of the incubation. The collector-gatherers and shredders reached higher densities in the detritus that decomposed more rapidly (Ocotea sp. and M. guyanensis), principally in the more advanced stages of colonization. The collector-filterers reached higher densities in the detritus that decomposed more slowly (P. heptaphyllum, P. brasiliense, and M. chartacea), principally in the initial stages of incubation. A cluster analysis divided the detritus samples of different leaf species according to the exposure time (initial phase: up to 7 days; intermediate phase: 7–30 days; advanced phase: 30–120 days), suggesting some succession in invertebrate colonization, with differences in taxon composition (indicator taxa analysis). These results suggest that regardless of the leaf-detritus species, exposure time was the main factor that influenced the colonization process of aquatic invertebrates.

Keywords

Brazilian Savanna (Cerrado) Functional feeding groups Invertebrate assemblages Leaf patches Tropical streams 

Notes

Acknowledgments

The authors are grateful to the Research Foundation of the State of Minas Gerais (FAPEMIG), the Brazilian National Council for Research (CNPq), and the Ministry of Education of Brazil (CAPES Foundation) for financial support. This article was written while Marcos Callisto was a sabbatical visitor (CAPES fellowship No. 4959/09-4) at the IMAR, Universidade de Coimbra, Portugal. Manuel Graça and several anonymous referees provided extensive comments that improved the final version of the manuscript. Thanks to the U.S. Fish & Wildlife Service and the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA) for logistical facilities and licenses, and to our colleagues Juliana S. França and Joana D’arc de Paula for their assistance during field and laboratory work.

References

  1. Abelho, M., 2001. From litterfall to breakdown in streams: a review. Scientific World 1: 656–680.Google Scholar
  2. Anderson, N. H. & J. R. Sedell, 1979. Detritus processing by macroinvertebrates in stream ecosystems. Annual Review of Entomology 24: 351–377.CrossRefGoogle Scholar
  3. Armitage, P., P. S. Cranston & L. C. V. Pinder, 1994. Chironomidae: Biology and Ecology of Non-biting Midges. Chapman and Hall, London, UK.Google Scholar
  4. Bastian, M., R. G. Pearson & L. Boyero, 2008. Effects of diversity loss on ecosystem function across trophic levels and ecosystems: a test in a detritus-based tropical food web. Austral Ecology 33: 301–306.CrossRefGoogle Scholar
  5. Begon, M., J. L. Harper & C. R. Townsend, 2006. Ecology: Individuals, Populations and Communities. Blackwell Publishing, Oxford, UK.Google Scholar
  6. Benstead, J. P., 1996. Macroinvertebrates and the processing of leaf litter in a tropical stream. Biotropica 28: 367–375.CrossRefGoogle Scholar
  7. Bunn, S. E., 1988. Processing of leaf litter in two northern jarrah forest streams, Western Australia: II. The role of macroinvertebrates and the influence of soluble polyphenols and inorganic sediment. Hydrobiologia 162: 211–233.CrossRefGoogle Scholar
  8. Callisto, M., M. Goulart, A. O. Medeiros, P. Moreno & C. A. Rosa, 2004. Diversity assessment of benthic macroinvertebrates, yeasts, and microbiological indicators along a longitudinal gradient in Serra do Cipó. Brazilian Journal of Biology 64: 1–12.CrossRefGoogle Scholar
  9. Callisto, M. Jr., J. F. Gonçalves & M. A. S. Graça, 2007. Leaf litter as a possible food source for chironomids in headwater streams. Revista Brasileira de Zoologia 24: 442–448.CrossRefGoogle Scholar
  10. Camacho, R., L. Boyero, A. Cornejo, A. Ibáñez & R. G. Pearson, 2009. Local variation in shredder distribution can explain their oversight in tropical streams. Biotropica 41: 625–632.CrossRefGoogle Scholar
  11. Canhoto, C. & M. A. S. Graça, 1998. Leaf retention: a comparative study between two stream categories and leaf species. Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 26: 990–993.Google Scholar
  12. Chara, J., D. Baird, T. Telfer & L. Giraldo, 2007. A comparative study of leaf breakdown of three native tree species in a slowly-flowing headwater stream in the Colombian Andes. International Review of Hydrobiology 92: 183–198.CrossRefGoogle Scholar
  13. Cheshire, K., L. Boyero & R. G. Pearson, 2005. Food webs in tropical Australian streams: shredders are not scarce. Freshwater Biology 50: 748–769.CrossRefGoogle Scholar
  14. Costa, C., S. Ide & C. E. Simonka, 2006. Insetos imaturos. Metamorfose e identificação. Editora Holos, Ribeirão Preto, Brazil.Google Scholar
  15. Cummins, K. W., M. A. Wilzbach, D. M. Gates, J. B. Perry & W. B. Taliaferro, 1989. Shredders and riparian vegetation: leaf litter that falls into streams influences communities of stream invertebrates. BioScience 39: 24–30.CrossRefGoogle Scholar
  16. Cummins, K. W., R. W. Merritt & P. C. N. Andrade, 2005. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Studies on Neotropical Fauna and Environment 40: 69–89.CrossRefGoogle Scholar
  17. Dobson, M. A., A. Magana, J. M. Mathooko & F. D. Ndegwa, 2002. Detritivores in Kenyan highland streams: more evidence for the paucity of shredders in the tropics? Freshwater Biology 47: 909–919.CrossRefGoogle Scholar
  18. Dudgeon, D., 1982. An investigation of physical and biological processing of two species of leaf litter in Tai Po Kau forest stream, New Territories, Hong Kong. Archiv für Hydrobiologie 96: 1–32.Google Scholar
  19. Dudgeon, D. & K. K. Y. Wu, 1999. Leaf litter in a tropical stream: food or substrate for macroinvertebrates? Archiv für Hydrobiologie 146: 65–82.Google Scholar
  20. Dufrêne, M. & P. Legendre, 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.Google Scholar
  21. Fernández, H. R. & E. Domínguez, 2001. Guia para la determinación de los artrópodos bentónicos sudamericanos. Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina.Google Scholar
  22. Gessner, M. O. & M. Dobson, 1993. Colonization of fresh and dried leaf litter by lotic macroinvertebrates. Archiv für Hydrobiologie 127: 141–149.Google Scholar
  23. Gjerlov, C. & J. S. Richardson, 2004. Patchy resources in a heterogeneous environment: effects of leaf litter and forest cover on colonization patterns of invertebrates in a British Columbian stream. Archiv für Hydrobiologie 161: 307–327.CrossRefGoogle Scholar
  24. Gonçalves, J. F. Jr., F. A. Esteves & M. Callisto, 2000. Succession and diversity of Chironomidae in detritus of Typha domingensis in a coastal lagoon (Parque Nacional da Restinga de Jurubatiba, State of Rio de Janeiro, Brazil). Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 27: 2374–2377.Google Scholar
  25. Gonçalves, J. F. Jr., A. M. Santos & F. A. Esteves, 2004. The influence of the chemical composition of Typha dominguensis and Nymphaea ampla on invertebrate colonization during decomposition in a Brazilian coastal lagoon. Hydrobiologia 527: 125–137.CrossRefGoogle Scholar
  26. Gonçalves, J. F. Jr., J. S. França & M. Callisto, 2006a. Dynamics of allochthonous organic matter in a tropical Brazilian headstream. Brazilian Archives of Biology and Technology 49: 967–973.Google Scholar
  27. Gonçalves, J. F. Jr., J. S. França, A. O. Medeiros, C. A. Rosa & M. Callisto, 2006b. Leaf breakdown in a tropical stream. International Review of Hydrobiology 91: 164–177.CrossRefGoogle Scholar
  28. Gonçalves, J. F. Jr., M. A. S. Graça & M. Callisto, 2006c. Leaf-litter breakdown in 3 streams in temperate, Mediterranean, and tropical Cerrado climates. Journal of the North American Benthological Society 25: 344–355.CrossRefGoogle Scholar
  29. Gonçalve, J. F. Jr., M. A. S. Graça & M. Callisto, 2007. Litter decomposition in a Cerrado savannah stream is retarded by leaf toughness, low dissolved nutrients and a low density of shredders. Freshwater Biology 52: 1440–1451.CrossRefGoogle Scholar
  30. Graça, M. A. S., 2001. The role of invertebrates on leaf litter decomposition in streams—a review. International Review of Hydrobiology 86: 383–393.CrossRefGoogle Scholar
  31. Graça, M. A. S., C. Cressa, M. O. Gessner, M. J. Feio, K. A. Callies & C. Barrios, 2001. Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshwater Biology 46: 947–957.CrossRefGoogle Scholar
  32. Grubbs, S. A., R. E. Jacobsen & K. W. Cummins, 1995. Colonization by Chironomidae (Insecta, Diptera) on three distinct leaf substrates in an Appalachian stream. Annales de Limnologie 31: 105–118.CrossRefGoogle Scholar
  33. Haapala, A., T. Muotka & A. Markkola, 2001. Breakdown and macroinvertebrate and fungal colonization of alder, birch, and willow leaves in a boreal forest stream. Journal of the North American Benthological Society 20: 395–407.CrossRefGoogle Scholar
  34. Hoffmann, A., 2005. Dynamics of fine particulate organic matter (FPOM) and macroinvertebrates in natural and artificial leaf packs. Hydrobiologia 549: 167–178.CrossRefGoogle Scholar
  35. Irons, J. G., M. W. Oswood, J. R. Stout & C. M. Pringle, 1994. Latitudinal patterns in leaf litter breakdown: is temperature really important? Freshwater Biology 32: 401–411.CrossRefGoogle Scholar
  36. Kobayashi, S. & T. Kagaya, 2004. Litter patch types determine macroinvertebrate assemblages in pools of a Japanese headwater stream. Journal of the North American Benthological Society 23: 78–89.CrossRefGoogle Scholar
  37. Kobayashi, S. & T. Kagaya, 2005. Hot spots of leaf breakdown within a headwater stream reach: comparing breakdown rates among litter patch types with different macroinvertebrate assemblages. Freshwater Biology 50: 921–929.CrossRefGoogle Scholar
  38. Lancaster, J. & A. G. Hildrew, 1993. Flow refugia and the microdistribution of lotic macroinvertebrates. Journal of the North American Benthological Society 12: 385–393.CrossRefGoogle Scholar
  39. Mathuriau, C. & E. Chauvet, 2002. Breakdown of leaf litter in a Neotropical stream. Journal of the North American Benthological Society 21: 384–396.CrossRefGoogle Scholar
  40. Merritt, R. W. & K. W. Cummins, 1996. An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company, Dubuque, USA.Google Scholar
  41. Moretti, M. S. Jr., J. F. Gonçalves, R. Ligeiro & M. Callisto, 2007a. Invertebrates colonization on native tree leaves in a Neotropical stream (Brazil). International Review of Hydrobiology 92: 199–210.CrossRefGoogle Scholar
  42. Moretti, M. S. Jr., J. F. Gonçalves & M. Callisto, 2007b. Leaf breakdown in two tropical streams: differences between single and mixed species packs. Limnologica 37: 250–258.Google Scholar
  43. Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. Fonseca & J. Kent, 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.CrossRefPubMedGoogle Scholar
  44. Nolen, J. & R. G. Pearson, 1993. Factors affecting litter processing by Anisocentropus kirrhamus (Trichoptera: Calamoceratidae) from an Australian tropical forest stream. Freshwater Biology 19: 469–479.CrossRefGoogle Scholar
  45. Oberndorfer, R. Y., J. V. McArthur, J. R. Barnes & J. Dixon, 1984. The effect of invertebrate predators on leaf litter processing in an alpine stream. Ecology 65: 1325–1331.CrossRefGoogle Scholar
  46. Oertli, B., 1993. Leaf litter processing and energy flow through macroinvertebrates in a woodland pond (Switzerland). Oecologia 96: 466–477.CrossRefGoogle Scholar
  47. Oliveira, A. F. M. & R. J. Marquis, 2002. The Cerrados of Brazil. Columbia University Press, New York.Google Scholar
  48. Pérez, G. R., 1988. Guía para el estudio de los macroinvertebrados acuáticos del Departamento de Antioquia. Fondo Fen. Colombia/Colciencias, Universidad de Antioquia, Colombia.Google Scholar
  49. Pringle, C. M. & A. Ramírez, 1998. Use of both benthic and drift sampling techniques to assess tropical stream invertebrate communities along an altitudinal gradient, Costa Rica. Freshwater Biology 39: 359–373.CrossRefGoogle Scholar
  50. Prochazka, K., B. A. Stewart & B. R. Davies, 1991. Leaf litter retention and its implications for shredder distribution in two headwater streams. Archiv für Hydrobiologie 120: 315–325.Google Scholar
  51. Ribas, A. C. de A., M. O. Tanaka & A. L. T. de Souza, 2006. Evaluation of macrofaunal effects on leaf litter breakdown rates in aquatic and terrestrial habitats. Austral Ecology 31: 783–790.CrossRefGoogle Scholar
  52. Rosemond, A. D., C. M. Pringle & A. Ramirez, 1998. Macroconsumer effects on insect detritivores and detritus processing in a tropical stream. Freshwater Biology 39: 515–523.CrossRefGoogle Scholar
  53. Stout, R. J. & W. H. Taft, 1985. Growth patterns of a chironomid shredder on fresh and senescent tag alder leaves in two Michigan streams. Journal of Freshwater Ecology 3: 147–153.Google Scholar
  54. Strahler, A. N., 1963. The Earth Sciences. Harper & Row, New York, NY.Google Scholar
  55. Sylvestre, S. & R. C. Bailey, 2005. Ecology of leaf pack macroinvertebrate communities in streams of the Fraser River Basin, British Columbia. Freshwater Biology 50: 1094–1104.CrossRefGoogle Scholar
  56. Tanaka, M. O., A. C. A. Ribas & A. L. T. de Souza, 2006. Macroinvertebrate succession during leaf breakdown in a perennial karstic river in western Brazil. Hydrobiologia 568: 493–498.CrossRefGoogle Scholar
  57. Tomanova, S., E. Goitia & J. Helesic, 2006. Trophic levels and functional feeding groups of macroinvertebrates in Neotropical streams. Hydrobiologia 556: 251–264.CrossRefGoogle Scholar
  58. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  59. Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277: 102–104.CrossRefGoogle Scholar
  60. Wantzen, K. M. & R. Wagner, 2006. Detritus processing by invertebrate shredders: a neotropical-temperate comparison. Journal of the North American Benthological Society 25: 216–232.CrossRefGoogle Scholar
  61. Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17: 567–594.CrossRefGoogle Scholar
  62. Zar, J. H., 1999. Biostatistical Analysis. Prentice-Hall, New Jersey, USA.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Raphael Ligeiro
    • 1
  • Marcelo S. Moretti
    • 1
    • 2
  • José Francisco GonçalvesJr.
    • 1
    • 3
  • Marcos Callisto
    • 1
  1. 1.Laboratório de Ecologia de Bentos, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Programa de Pós-graduação em Ecologia de EcossistemasCentro Universitário Vila VelhaVila VelhaBrazil
  3. 3.Departamento de Ecologia, Instituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaDFBrazil

Personalised recommendations