Abstract
A crucial component for developing insect management strategies is the understanding of the ecological parameters involved in habitat selection by proliferating species. The key ecological drivers underlying habitat selection in the mosquito Coquillettidia sp. have been investigated in natura. Vegetation analysis suggested that the most suitable habitats were ponds with a high vegetation cover maintaining a high degree of humidity in the air. The optimal biotope for Coquillettidia was associated with the presence of larval host plants such as Typha sp., Phragmites sp., and Juncus sp. Water quality was also found to be a key factor in larval habitat distribution. The presence of larvae was significantly correlated with physico-chemical factors and the optimal water characteristics were neutral pH, low salt concentration, and a relatively low level of suspended particulate matter. A significant correlation was observed between chemical cues and the Coquillettidia distribution pattern. For instance, 2,6-di-tert-butyl-p-cresol was positively correlated to larval habitat, whereas high lauric acid and heptadecanoic acid concentrations may be limiting factors. This study underlines the fact that mosquito habitat selection is driven by a complex process based on discriminating levels of several ecological factors. Multivariate analysis helps understand such processes, which is this case will assist in managing expanding populations of a species that threatens human health.
This is a preview of subscription content, access via your institution.




References
Allan, S. A. & D. L. Kline, 1995. Evaluation of organic infusions and synthetic compounds mediating oviposition in Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Journal of Chemical Ecology 21: 1847–1860.
Batzer, D. P. & R. D. Sjogren, 1986. Larval habitat characteristics of Coquillettidia perturbans (Diptera: Cilicidae). Canadian Entomologist 118(11): 1193–1198.
Bell, S. S., A. Tewfik, M. O. Hall & M. S. Fonseca, 2008. Evaluation of seagrass planting and monitoring techniques: implications for assessing restoration success and habitat equivalency. Restoration Ecology 16: 407–416.
Bentley, M. D. & J. F. Day, 1989. Chemical ecology and behavioural aspects of mosquito oviposition. Annual Reviews Entomology 34: 401–421.
Bosak, P. J., L. M. Reed & W. J. Crans, 2001. Habitat preference of host-seeking Coquillettidia perturbans (Walker) in relation to birds and eastern equine encephalomyelitis virus in New Jersey. Journal of Vector Ecology 26: 103–109.
Bosch, O. J., M. Geier & J. Boeckh, 2000. Contribution of fatty acids to olfactory host finding of female Aedes aegypti. Chemical Senses 25: 323–330.
Brothers, D. R., 2005. New distributional records for Coquillettidia perturbans (Walker) (Diptera, Culicidae) in Idaho. Journal of Vector Ecology 30: 163–164.
Callahan, J. L. & C. D. Morris, 1987. Habitat characteristics of Coquillettidia perturbans in central Florida. Journal of the American Mosquito Control Association 3: 176–180.
Claeys-Mekdade, C. & J. Sérandour, 2009. Ce que le moustique nous apprend sur le dualisme anthropocentrisme/biocentrisme: perspective interdisciplinaire sociologie/biologie. Natures Sciences Sociétés 17: 136–144.
Carver, S., A. Storey, H. Spafford, J. Lynas, L. Chandler & P. Weinstein, 2009. Salinity as a driver of aquatic invertebrate colonisation behaviour and distribution in the wheatbelt of Western Australia. Hydrobiologia 617: 75–90.
Clements, A. N., 1999. The Biology of Mosquitoes, Vol. 2: Sensory Reception and Behaviour. CABI Publishing, Wallingford, UK.
Collins, L. E. & A. Blackwell, 2002. Olfactory cues for oviposition behaviour in Toxorhynchites moctezuma and Toxorhynchites amboinensis (Diptera: Culicidae). Journal of Medical Entomology 39: 121–126.
Cupp, E. W., H. K. Hassan, X. Yue, W. K. Oldland, B. M. Lilley & T. R. Unnasch, 2007. West Nile virus: infection in mosquitoes in the Mid-South USA, 2002–2005. Journal of Medical Entomology 44: 117–125.
Davis, E. E. & M. F. Bowen, 1994. Sensory physiological-basis for attraction in mosquitoes. Journal of the American Mosquito Control Association 10: 316–325.
Frank, J. H., 1986. Bromeliads as ovipositional sites for Wyeomyia mosquitoes-form and color influence behavior. Florida Entomologist 69: 728–742.
Ganesan, K., M. Mendki, M. V. S. Suryanarayana, S. Prakash & R. C. Malhotra, 2006. Studies of Aedes aegypti (Diptera: Culicidae) ovipositional responses to newly identified semiochemicals from conspecific eggs. Australian Journal of Entomology 45: 75–80.
Geetha, I., K. P. Paily, V. Padmanaban & K. Balaraman, 2003. Oviposition response of the mosquito, Culex quinquefasciatus to the secondary metabolite(s) of the fungus, Trichoderma viride. Memorias do Instituto Oswaldo Cruz 98: 223–226.
Guisan, A. & W. Thuiller, 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 993–1009.
Hubálek, Z. & J. Halouzka, 1999. West Nile fever-a reemerging mosquito-borne viral disease in Europe. Emerging Infectious Diseases 5(5): 643–650.
Hwang, Y. S., G. W. Schultz, H. Axelrod, W. L. Kramer & M. S. Mulla, 1982. Ovipositional repellency of fatty acids and their derivatives against Culex and Aedes mosquitoes. Environmental Entomology 11: 223–226.
Jacob, B. G., E. J. Muturi, J. M. Mwangangi, J. Funes, E. X. Caamano, S. Muriu, J. Shililu, J. Githure & R. J. Novak, 2007. Remote and field level quantification of vegetation covariates for malaria mapping in three rice agro-village complexes in Central Kenya. International Journal of Health Geographics 6: 21–32.
Jordan, S., 1992. Cues for oviposition site selection by Toxorhynchites amboinensis (Diptera: Culicidae). Journal of Medical Entomology 29: 37–40.
Kannathasan, K., A. Senthilkumar, V. Venkatesalu & M. Chandrasekaran, 2008. Larvicidal activity of fatty acid methyl esters of Vitex species against Culex quinquefasciatus. Parasitology Research 103: 999–1001.
LaPointe, D. A., 2007. Current and potential impacts of mosquitoes and the pathogens they vector in the Pacific Region. Proceedings of the Hawaiian Entomological Society 39: 75–81.
Laurence, B. R., 1960. The biology of two species of Mosquito, Mansonia Africana (Theobald), and Mansonia uniformis (Theobald) belonging to the subgenus Mansoniodes (Diptera, Culicidae). Bulletin of Entomological Research 51: 491–517.
Madeira, N. G., C. A. Macharelli & L. R. Carvalho, 2002. Variation of the oviposition preferences of Aedes aegypti in function of substratum and humidity. Memorias do Instituto Oswaldo Cruz 97: 415–420.
Mandalakas, A. M., C. Kippes, J. Sedransk, J. R. Kile, A. Garg, et al., 2005. West Nile virus epidemic, Northeast Ohio, 2002. Emerging Infectious Diseases 11(11): 1774–1777.
Marshall, J. F., 1938. The British Mosquitoes. British Museum (Natural History), London.
Medlock, J. M., K. R. Snow & S. Leach, 2005. Potential transmission of West Nile virus in the British Isles: an ecological review of candidate mosquito bridge vectors. Medical and Veterinary Entomology 19: 2–21.
Murgue, B., S. Murri, S. Zientara, B. Durand, J. P. Durand & H. Zeller, 2001. West Nile outbreak in horses in Southern France, 2000: the return after 35 years. Emerging Infectious Diseases 7(4): 692–696.
Navarro, D. M. A. F., P. E. S. de Oliveira, R. P. J. Potting, A. C. Brito, S. J. F. Fital & A. E. G. Sant’Ana, 2003. The potential attractant or repellent effects of different water types on oviposition in Aedes aegypti L. (Dipt., Culicidae). Journal of Applied Entomology 127: 46–50.
Prasad, K. R. & P. Anbarasan, 2007. Stereoselective synthesis of (-)-6-acetoxyhexadecanolide: a mosquito oviposition attractant pheromone. Tetrahedron Asymmetry 18: 2479–2483.
Ramsdale, C. D. & K. R. Snow, 2001. Distribution of the genera Coquillettidia, Orthopodomyia and Uranotaenia in Europe. European Mosquito Bulletin 10: 25–29.
Reiskind, M. H. & M. L. Wilson, 2004. Culex restuans (Diptera: Culicidae) oviposition behaviour determined by larval habitat quality and quantity in south-eastern Michigan. Journal of Medical Entomology 41: 179–186.
Sérandour, J., D. Rey & M. Raveton, 2006. Behavioural adaptation of Coquillettidia (Coquillettidia) richiardii larvae to underwater life: environmental cues governing plant-insect interaction. Entomologia Experimentalis et Applicata 120: 195–200.
Sérandour, J., S. Reynaud, J. Willison, J. Patouraux, T. Gaude, P. Ravanel, G. Lempérière & M. Raveton, 2008. Ubiquitous water-soluble molecules in aquatic plant exudates determine specific insect attraction. PloS ONE 3(10): e3350.
Service, M. W., 1993. Mosquito Ecology. Field Sampling Methods, 2nd ed. Elsevier, Chapman and Hall, London.
Sharma, K. R., T. Seenivasagan, A. N. Rao, K. Ganesan, O. P. Agarwal, R. C. Malhotra & S. Prakash, 2008. Oviposition responses of Aedes aegypti and Aedes albopictus to certain fatty acid esters. Parasitology Research 103: 1065–1073.
Sukumar, K., M. J. Perich & L. R. Boobar, 1991. Botanical derivatives in mosquito-control—a review. Journal of the American Mosquito Control 7: 210–237.
ter Braak, C. J. F., 1985. Correspondence analysis of incidence and abundance data: properties in terms of a unimodal response model. Biometrics 41: 859–873.
ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.
Wesenberg-Lund, C., 1920. Contribution to the biology of the Danish Culicidae. In København, A. F. (ed.), Mémoires de l’Académie Royale des Sciences et des Lettres du Danemark, Copenhague, Section des Sciences, 8ème série, VII, No 1. Høst & søn, Denmark: 1–210.
Acknowledgements
We thank Rémi Foussadier and Delphine Rey for their assistance. We are grateful to Anne-Laure Tissut for text improvements.
Author information
Authors and Affiliations
Corresponding author
Additional information
Handling editor: S. A. Halse
Rights and permissions
About this article
Cite this article
Sérandour, J., Willison, J., Thuiller, W. et al. Environmental drivers for Coquillettidia mosquito habitat selection: a method to highlight key field factors. Hydrobiologia 652, 377–388 (2010). https://doi.org/10.1007/s10750-010-0372-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10750-010-0372-y
Keywords
- Habitat selection
- Water chemistry
- Environmental factors
- Proliferating species
- Coquillettidia