Skip to main content

Environmental drivers for Coquillettidia mosquito habitat selection: a method to highlight key field factors

Abstract

A crucial component for developing insect management strategies is the understanding of the ecological parameters involved in habitat selection by proliferating species. The key ecological drivers underlying habitat selection in the mosquito Coquillettidia sp. have been investigated in natura. Vegetation analysis suggested that the most suitable habitats were ponds with a high vegetation cover maintaining a high degree of humidity in the air. The optimal biotope for Coquillettidia was associated with the presence of larval host plants such as Typha sp., Phragmites sp., and Juncus sp. Water quality was also found to be a key factor in larval habitat distribution. The presence of larvae was significantly correlated with physico-chemical factors and the optimal water characteristics were neutral pH, low salt concentration, and a relatively low level of suspended particulate matter. A significant correlation was observed between chemical cues and the Coquillettidia distribution pattern. For instance, 2,6-di-tert-butyl-p-cresol was positively correlated to larval habitat, whereas high lauric acid and heptadecanoic acid concentrations may be limiting factors. This study underlines the fact that mosquito habitat selection is driven by a complex process based on discriminating levels of several ecological factors. Multivariate analysis helps understand such processes, which is this case will assist in managing expanding populations of a species that threatens human health.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Allan, S. A. & D. L. Kline, 1995. Evaluation of organic infusions and synthetic compounds mediating oviposition in Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Journal of Chemical Ecology 21: 1847–1860.

    Article  CAS  Google Scholar 

  • Batzer, D. P. & R. D. Sjogren, 1986. Larval habitat characteristics of Coquillettidia perturbans (Diptera: Cilicidae). Canadian Entomologist 118(11): 1193–1198.

    Article  Google Scholar 

  • Bell, S. S., A. Tewfik, M. O. Hall & M. S. Fonseca, 2008. Evaluation of seagrass planting and monitoring techniques: implications for assessing restoration success and habitat equivalency. Restoration Ecology 16: 407–416.

    Article  Google Scholar 

  • Bentley, M. D. & J. F. Day, 1989. Chemical ecology and behavioural aspects of mosquito oviposition. Annual Reviews Entomology 34: 401–421.

    Article  CAS  Google Scholar 

  • Bosak, P. J., L. M. Reed & W. J. Crans, 2001. Habitat preference of host-seeking Coquillettidia perturbans (Walker) in relation to birds and eastern equine encephalomyelitis virus in New Jersey. Journal of Vector Ecology 26: 103–109.

    CAS  PubMed  Google Scholar 

  • Bosch, O. J., M. Geier & J. Boeckh, 2000. Contribution of fatty acids to olfactory host finding of female Aedes aegypti. Chemical Senses 25: 323–330.

    CAS  PubMed  Google Scholar 

  • Brothers, D. R., 2005. New distributional records for Coquillettidia perturbans (Walker) (Diptera, Culicidae) in Idaho. Journal of Vector Ecology 30: 163–164.

    PubMed  Google Scholar 

  • Callahan, J. L. & C. D. Morris, 1987. Habitat characteristics of Coquillettidia perturbans in central Florida. Journal of the American Mosquito Control Association 3: 176–180.

    CAS  PubMed  Google Scholar 

  • Claeys-Mekdade, C. & J. Sérandour, 2009. Ce que le moustique nous apprend sur le dualisme anthropocentrisme/biocentrisme: perspective interdisciplinaire sociologie/biologie. Natures Sciences Sociétés 17: 136–144.

    Article  Google Scholar 

  • Carver, S., A. Storey, H. Spafford, J. Lynas, L. Chandler & P. Weinstein, 2009. Salinity as a driver of aquatic invertebrate colonisation behaviour and distribution in the wheatbelt of Western Australia. Hydrobiologia 617: 75–90.

    Article  Google Scholar 

  • Clements, A. N., 1999. The Biology of Mosquitoes, Vol. 2: Sensory Reception and Behaviour. CABI Publishing, Wallingford, UK.

  • Collins, L. E. & A. Blackwell, 2002. Olfactory cues for oviposition behaviour in Toxorhynchites moctezuma and Toxorhynchites amboinensis (Diptera: Culicidae). Journal of Medical Entomology 39: 121–126.

    Article  CAS  PubMed  Google Scholar 

  • Cupp, E. W., H. K. Hassan, X. Yue, W. K. Oldland, B. M. Lilley & T. R. Unnasch, 2007. West Nile virus: infection in mosquitoes in the Mid-South USA, 2002–2005. Journal of Medical Entomology 44: 117–125.

    Article  CAS  PubMed  Google Scholar 

  • Davis, E. E. & M. F. Bowen, 1994. Sensory physiological-basis for attraction in mosquitoes. Journal of the American Mosquito Control Association 10: 316–325.

    CAS  PubMed  Google Scholar 

  • Frank, J. H., 1986. Bromeliads as ovipositional sites for Wyeomyia mosquitoes-form and color influence behavior. Florida Entomologist 69: 728–742.

    Article  Google Scholar 

  • Ganesan, K., M. Mendki, M. V. S. Suryanarayana, S. Prakash & R. C. Malhotra, 2006. Studies of Aedes aegypti (Diptera: Culicidae) ovipositional responses to newly identified semiochemicals from conspecific eggs. Australian Journal of Entomology 45: 75–80.

    Article  Google Scholar 

  • Geetha, I., K. P. Paily, V. Padmanaban & K. Balaraman, 2003. Oviposition response of the mosquito, Culex quinquefasciatus to the secondary metabolite(s) of the fungus, Trichoderma viride. Memorias do Instituto Oswaldo Cruz 98: 223–226.

    CAS  PubMed  Google Scholar 

  • Guisan, A. & W. Thuiller, 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 993–1009.

    Article  Google Scholar 

  • Hubálek, Z. & J. Halouzka, 1999. West Nile fever-a reemerging mosquito-borne viral disease in Europe. Emerging Infectious Diseases 5(5): 643–650.

    Article  PubMed  Google Scholar 

  • Hwang, Y. S., G. W. Schultz, H. Axelrod, W. L. Kramer & M. S. Mulla, 1982. Ovipositional repellency of fatty acids and their derivatives against Culex and Aedes mosquitoes. Environmental Entomology 11: 223–226.

    CAS  Google Scholar 

  • Jacob, B. G., E. J. Muturi, J. M. Mwangangi, J. Funes, E. X. Caamano, S. Muriu, J. Shililu, J. Githure & R. J. Novak, 2007. Remote and field level quantification of vegetation covariates for malaria mapping in three rice agro-village complexes in Central Kenya. International Journal of Health Geographics 6: 21–32.

    Article  PubMed  Google Scholar 

  • Jordan, S., 1992. Cues for oviposition site selection by Toxorhynchites amboinensis (Diptera: Culicidae). Journal of Medical Entomology 29: 37–40.

    Google Scholar 

  • Kannathasan, K., A. Senthilkumar, V. Venkatesalu & M. Chandrasekaran, 2008. Larvicidal activity of fatty acid methyl esters of Vitex species against Culex quinquefasciatus. Parasitology Research 103: 999–1001.

    Article  PubMed  Google Scholar 

  • LaPointe, D. A., 2007. Current and potential impacts of mosquitoes and the pathogens they vector in the Pacific Region. Proceedings of the Hawaiian Entomological Society 39: 75–81.

    Google Scholar 

  • Laurence, B. R., 1960. The biology of two species of Mosquito, Mansonia Africana (Theobald), and Mansonia uniformis (Theobald) belonging to the subgenus Mansoniodes (Diptera, Culicidae). Bulletin of Entomological Research 51: 491–517.

    Article  Google Scholar 

  • Madeira, N. G., C. A. Macharelli & L. R. Carvalho, 2002. Variation of the oviposition preferences of Aedes aegypti in function of substratum and humidity. Memorias do Instituto Oswaldo Cruz 97: 415–420.

    CAS  PubMed  Google Scholar 

  • Mandalakas, A. M., C. Kippes, J. Sedransk, J. R. Kile, A. Garg, et al., 2005. West Nile virus epidemic, Northeast Ohio, 2002. Emerging Infectious Diseases 11(11): 1774–1777.

    PubMed  Google Scholar 

  • Marshall, J. F., 1938. The British Mosquitoes. British Museum (Natural History), London.

  • Medlock, J. M., K. R. Snow & S. Leach, 2005. Potential transmission of West Nile virus in the British Isles: an ecological review of candidate mosquito bridge vectors. Medical and Veterinary Entomology 19: 2–21.

    Article  CAS  PubMed  Google Scholar 

  • Murgue, B., S. Murri, S. Zientara, B. Durand, J. P. Durand & H. Zeller, 2001. West Nile outbreak in horses in Southern France, 2000: the return after 35 years. Emerging Infectious Diseases 7(4): 692–696.

    Article  CAS  PubMed  Google Scholar 

  • Navarro, D. M. A. F., P. E. S. de Oliveira, R. P. J. Potting, A. C. Brito, S. J. F. Fital & A. E. G. Sant’Ana, 2003. The potential attractant or repellent effects of different water types on oviposition in Aedes aegypti L. (Dipt., Culicidae). Journal of Applied Entomology 127: 46–50.

    Article  Google Scholar 

  • Prasad, K. R. & P. Anbarasan, 2007. Stereoselective synthesis of (-)-6-acetoxyhexadecanolide: a mosquito oviposition attractant pheromone. Tetrahedron Asymmetry 18: 2479–2483.

    Article  CAS  Google Scholar 

  • Ramsdale, C. D. & K. R. Snow, 2001. Distribution of the genera Coquillettidia, Orthopodomyia and Uranotaenia in Europe. European Mosquito Bulletin 10: 25–29.

    Google Scholar 

  • Reiskind, M. H. & M. L. Wilson, 2004. Culex restuans (Diptera: Culicidae) oviposition behaviour determined by larval habitat quality and quantity in south-eastern Michigan. Journal of Medical Entomology 41: 179–186.

    Article  PubMed  Google Scholar 

  • Sérandour, J., D. Rey & M. Raveton, 2006. Behavioural adaptation of Coquillettidia (Coquillettidia) richiardii larvae to underwater life: environmental cues governing plant-insect interaction. Entomologia Experimentalis et Applicata 120: 195–200.

    Article  Google Scholar 

  • Sérandour, J., S. Reynaud, J. Willison, J. Patouraux, T. Gaude, P. Ravanel, G. Lempérière & M. Raveton, 2008. Ubiquitous water-soluble molecules in aquatic plant exudates determine specific insect attraction. PloS ONE 3(10): e3350.

  • Service, M. W., 1993. Mosquito Ecology. Field Sampling Methods, 2nd ed. Elsevier, Chapman and Hall, London.

    Google Scholar 

  • Sharma, K. R., T. Seenivasagan, A. N. Rao, K. Ganesan, O. P. Agarwal, R. C. Malhotra & S. Prakash, 2008. Oviposition responses of Aedes aegypti and Aedes albopictus to certain fatty acid esters. Parasitology Research 103: 1065–1073.

    Article  PubMed  Google Scholar 

  • Sukumar, K., M. J. Perich & L. R. Boobar, 1991. Botanical derivatives in mosquito-control—a review. Journal of the American Mosquito Control 7: 210–237.

    CAS  Google Scholar 

  • ter Braak, C. J. F., 1985. Correspondence analysis of incidence and abundance data: properties in terms of a unimodal response model. Biometrics 41: 859–873.

    Article  Google Scholar 

  • ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Article  Google Scholar 

  • Wesenberg-Lund, C., 1920. Contribution to the biology of the Danish Culicidae. In København, A. F. (ed.), Mémoires de l’Académie Royale des Sciences et des Lettres du Danemark, Copenhague, Section des Sciences, 8ème série, VII, No 1. Høst & søn, Denmark: 1–210.

Download references

Acknowledgements

We thank Rémi Foussadier and Delphine Rey for their assistance. We are grateful to Anne-Laure Tissut for text improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muriel Raveton.

Additional information

Handling editor: S. A. Halse

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sérandour, J., Willison, J., Thuiller, W. et al. Environmental drivers for Coquillettidia mosquito habitat selection: a method to highlight key field factors. Hydrobiologia 652, 377–388 (2010). https://doi.org/10.1007/s10750-010-0372-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0372-y

Keywords

  • Habitat selection
  • Water chemistry
  • Environmental factors
  • Proliferating species
  • Coquillettidia