, Volume 661, Issue 1, pp 5–20 | Cite as

Hypolimnetic phosphorus and nitrogen dynamics in a small, eutrophic lake with a seasonally anoxic hypolimnion

  • Deniz ÖzkundakciEmail author
  • David P. Hamilton
  • Max M. Gibbs


In situ estimates of sediment nutrient flux are necessary to understand seasonal variations in internal loading in lakes. We investigated the sources and sinks of nutrients in the hypolimnion of a small (0.33 km2), relatively shallow (18 m max. depth), eutrophic lake (Lake Okaro, New Zealand) in order to determine changes in sediment nutrient fluxes resulting from a whole lake sediment capping trial using a modified zeolite phosphorus inactivation agent (Z2G1). Sediment nutrient fluxes in the hypolimnion were estimated as the residual term in a nutrient budget model that accounted for mineralisation of organic nutrients, nutrient uptake by phytoplankton and mixing, nitrification, adsorption/desorption and diffusion of dissolved nutrients at the thermocline. Of the total hypolimnetic phosphate and ammonium fluxes during one period of seasonal stratification (2007–08), up to 60 and 50%, respectively, were derived from the bottom sediments, 18 and 24% were due to mineralisation of organic species, 36 and 28% were due to phytoplankton uptake and 9 and 6% were from diffusion across the thermocline. Adsorption/desorption of phosphate to suspended solids and nitrification were of minor (<8%) importance to the total fluxes. Any reduction in sediment nutrient release by Z2G1 was small compared with both the total sediment nutrient flux and the sum of other hypolimnetic fluxes. Uneven sediment coverage of Z2G1 may have been responsible for the limited effect of the sediment capping layer formed by Z2G1.


Eutrophication Lake Okaro Internal loading Lake restoration Sediment capping Mineralisation 



The first author was funded with a Ph.D. scholarship within the Lake Biodiversity Restoration program funded by the N.Z. Foundation of Research, Science and Technology (Contract UOWX 0505). We thank Dennis Trolle for assistance with the modelling and Michael Landman for helpful comments on an earlier manuscript draft. We gratefully acknowledge Environment Bay of Plenty and Scion (Rotorua) for additional funding. We are grateful to the two anonymous referees whose comments greatly improved the manuscript.


  1. Anderson, F. O. & P. Ring, 1999. Comparison of phosphorus release from littoral and profundal sediments in a shallow, eutrophic lake. Hydrobiologia 409: 175–183.CrossRefGoogle Scholar
  2. Arar, E. J. & G. B. Collins, 1997. Method 445.0, In Vitro Determination of Chlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence, Revision 1.2. U.S. Environmental Protection Agency, Cincinnati: 22.Google Scholar
  3. Auer, M. T., N. A. Johnson, M. R. Penn & S. W. Effler, 1993. Measurements and verification of rates of sediment phosphorus release for a hypereutrophic urban lake. Hydrobiologia 253: 301–309.CrossRefGoogle Scholar
  4. Berg, U., T. Neumann, D. Donnert, R. Nüsch & D. Stüben, 2004. Sediment capping in eutrophic lakes – efficacy of undisturbed barriers to immobilize phosphorus. Applied Geochemistry 19: 1759–1771.CrossRefGoogle Scholar
  5. Beutel, M. W., 2001. Oxygen consumption and ammonia accumulation in the hypolimnion of Walker Lake, Nevada. Hydrobiologia 466: 107–117.CrossRefGoogle Scholar
  6. Burger, D. F., D. P. Hamilton, C. P. Pilditch & M. M. Gibbs, 2007. Benthic nutrient fluxes in a eutrophic, polymictic lake. Hydrobiologia 584: 13–25.CrossRefGoogle Scholar
  7. Carignan, R. & D. R. S. Lean, 1991. Regeneration of dissolved substances in a seasonally anoxic lake: the relative importance of processes occurring in the water column and in the sediments. Limnology and Oceanography 43: 683–707.CrossRefGoogle Scholar
  8. Chapra, S. C. & K. H. Reckhow, 1983. Engineering Approaches for Lake Management, Vol. 2. Mechanistic Modeling. Butterworth Publishers, Boston, MA: 492.Google Scholar
  9. Cleveland, W. S., 1979. Robust locally weighted regression and smoothing scatter plots. Journal of the American Statistical Association 74: 828–836.CrossRefGoogle Scholar
  10. Downes, M., 1988. Aquatic nitrogen transformations at low oxygen concentrations. Applied and Environmental Microbiology 54: 172–175.PubMedGoogle Scholar
  11. Ebina, J., T. Tsutsui & T. Shirai, 1983. Simultaneous determination of total nitrogen and total phosphorous in water using peroxodisulphate oxidation. Water Research 17: 1721–1726.CrossRefGoogle Scholar
  12. Environment Bay of Plenty, 2006. Lake Okaro Action Plan. ISSN 1175 9372, Environmental Publication 2006/03, Environment Bay of Plenty, Whakatane, New Zealand: 60 p.Google Scholar
  13. Förstner, U. & S. E. Apitz, 2007. Sediment Remediation: U.S. focus on capping and monitored natural recovery. Journal of Soils and Sediments 7: 351–358.CrossRefGoogle Scholar
  14. Forsyth, D. J., S. J. Dryden, M. R. James & W. F. Vincent, 1988. Lake Okaro ecosystem 1. Background limnology. New Zealand Journal of Marine and Freshwater Research 22: 17–28.CrossRefGoogle Scholar
  15. Furumai, H. & S. Ohgaki, 1989. Adsorption–desorption of phosphorus by lake sediments under anaerobic conditions. Water Research 23: 677–683.CrossRefGoogle Scholar
  16. Gächter, R. & B. Müller, 2003. Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. Limnology and Oceanography 48: 929–933.CrossRefGoogle Scholar
  17. Gal, G., M. R. Hipsey, A. Paparov, U. Wagner, V. Makler & T. Zohary, 2009. Implementation of ecological modelling as an effective management and investigation toll: Lake Kinneret as a case study. Ecological Modelling 220: 1697–1718.CrossRefGoogle Scholar
  18. Gibbs, M. M. & D. Özkundakci, 2009. Effects of the P-inactivation agent, Z2G1, on sediment P and N processes and fluxes across the sediment-water interface in Lake Okaro, New Zealand. Hydrobiologia (this issue).Google Scholar
  19. Gomez, E., M. Fillit, M. C. Ximenes & B. Picot, 1998. Phosphate mobility at the sediment-water interface of a Mediterranean lagoon (etang du Mejean), seasonal phosphate variation. Hydrobiologia 374: 203–216.CrossRefGoogle Scholar
  20. Hamilton, D. P. & S. F. Mitchell, 1997. Wave-induced shear stresses, plant nutrients and chlorophyll in seven shallow lakes. Freshwater Biology 1: 159–168.CrossRefGoogle Scholar
  21. Hamilton, D. P. & S. G. Schladow, 1997. Prediction of water quality in lakes and reservoirs. Part I – model description. Ecological Modelling 96: 91–110.CrossRefGoogle Scholar
  22. Hanaki, K., C. Wantawin & S. Ohgaki, 1990. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor. Water Research 24: 297–302.CrossRefGoogle Scholar
  23. Hecky, R. E., P. Campbell & L. L. Hendzel, 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnology and Oceanography 38: 709–724.CrossRefGoogle Scholar
  24. Hoare, R. A. & R. H. Spigel, 1987. Water balances, mechanics and thermal properties. In Vant, W. N. (ed.), Lake Managers Handbook. DSIR Wellington. Water and Soil Miscellaneous Publication, Vol. 103: 41–45.Google Scholar
  25. Holdren, G. C. Jr. & D. E. Armstrong, 1980. Factors affecting phosphorus release from intact lake sediment cores. Environmental Science & Technology 1: 79–87.CrossRefGoogle Scholar
  26. Holmer, M. & P. Storkholm, 2001. Sulphate reduction and sulphur cycling in lake sediments: a review. Freshwater Biology 46: 431–541.CrossRefGoogle Scholar
  27. Hupfer, M. & J. Lewandowski, 2008. Oxygen controls the phosphorus release from lake sediments – a long-lasting paradigm in limnology. International Review of Hydrobiology 93: 415–432.CrossRefGoogle Scholar
  28. Imberger, J. & J. C. Patterson, 1990. Physical limnology. Advances in Applied Mechanics 27: 303–475.CrossRefGoogle Scholar
  29. Jeppesen, E., M. Søndergaard, J. P. Jensen, K. E. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil, B. Foy, D. Gerdeux, S. E. Hampton, S. Hilt, K. L. Kangur, J. K. Hler, E. H. H. R. Lammens, T. L. Lauridsen, M. Manca, M. A. R. Miracle, B. Moss, P. N. Ges, G. Persson, G. Phillips, B. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Wille & M. Winder, 2005. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.CrossRefGoogle Scholar
  30. Jolly, V. H., 1977. The comparative limnology of some New Zealand lakes. New Zealand Journal of Marine and Freshwater Research 11: 307–340.CrossRefGoogle Scholar
  31. Kufel, L. & K. Kalinowska, 1997. Metalimnetic gradients and the vertical distribution of phosphorus in a eutrophic lake. Archiv für Hydrobiologie 140: 309–320.Google Scholar
  32. Lewis, W. M. & W. A. Wurtsbaugh, 2008. Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. International Review of Hydrobiology 93: 446–465.CrossRefGoogle Scholar
  33. Liikanen, A., L. Flöjt & P. Martikainen, 2002. Gas dynamics in eutrophic lake sediments affected by oxygen, nitrate, and sulfate. Journal of Environmental Quality 31: 338–349.CrossRefPubMedGoogle Scholar
  34. Lloyd, E. F., 1959. The hot springs and hydrothermal eruptions of Waiotapu. New Zealand Journal of Geology and Geography 2: 141–176.Google Scholar
  35. MacIntyre, S., K. M. Flynn, R. Jellison & J. R. Romero, 1999. Boundary mixing and nutrient fluxes in Mono Lake, California. Limnology and Oceanography 44: 512–529.CrossRefGoogle Scholar
  36. McColl, R. H. S., 1972. Chemistry and trophic status of seven New Zealand lakes. New Zealand Journal of Marine and Freshwater Research 6: 399–447.CrossRefGoogle Scholar
  37. Morris, D. P. & W. M. Lewis, 1988. Phytoplankton nutrient limitation in Colorado mountain lakes. Freshwater Biology 20: 315–327.CrossRefGoogle Scholar
  38. Mortimer, C. H., 1971. Chemical exchanges between sediments and water in the Great Lakes – speculations on probable regulatory mechanisms. Limnology and Oceanography 16: 387–404.CrossRefGoogle Scholar
  39. Nowlin, W. H., J. L. Evarts & M. J. Vanni, 2005. Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir. Freshwater Biology 50: 301–322.CrossRefGoogle Scholar
  40. Nürnberg, G. K., 1987. A comparison of internal phosphorus loads in lakes with anoxic hypolimnia: laboratory incubation versus in situ hypolimnetic phosphorus accumulation. Limnology and Oceanography 32: 1160–1164.CrossRefGoogle Scholar
  41. Nürnberg, G. K., 1988. The prediction of phosphorus release rates from total and reductant-soluble phosphorus in anoxic lake sediments. Canadian Journal of Fisheries and Aquatic Sciences 45: 453–462.CrossRefGoogle Scholar
  42. Paul, W. J., D. P. Hamilton & M. M. Gibbs, 2008. Low-dose alum application trialled as a management tool for internal nutrient loads in Lake Okaro, New Zealand. New Zealand Journal of Marine and Freshwater Research 42: 207–217.CrossRefGoogle Scholar
  43. Pearl, H. W., 2009. Controlling eutrophication along the freshwater-marine continuum: dual nutrient (N and P) reductions are essential. Estuaries and Coasts 32: 593–601.CrossRefGoogle Scholar
  44. Penn, M. R., M. T. Auer, S. M. Doerr, C. T. Driscoll, C. M. Brooks & S. W. Effler, 2000. Seasonality in phosphorus release rates from the sediments of a hypereutrophic lake under a matrix of pH and redox conditions. Canadian Journal of Fisheries and Aquatic Sciences 57: 1033–1041.CrossRefGoogle Scholar
  45. Pettersson, K., 2001. Phosphorus characteristics of settling and suspended particles in Lake Erken. Science of the Total Environment 266: 79–86.CrossRefPubMedGoogle Scholar
  46. Phillips, G., R. Jackson, C. Bennett & A. Chilvers, 1994. The importance of sediment phosphorus release in the restoration of very shallow lakes (The Norfolk Broads, England) and implications for biomanipulation. Hydrobiologia 275(276): 445–456.CrossRefGoogle Scholar
  47. Priscu, J. C., R. H. Spigel, M. M. Gibbs & M. T. Downes, 1986. A numerical analysis of hypolimnetic nitrogen and phosphorus transformations in Lake Rotoiti, New Zealand: a geothermally influenced lake. Limnology and Oceanography 31: 812–831.CrossRefGoogle Scholar
  48. Reitzel, K., J. Ahlgren, H. DeBrabandere, M. Walbebäck, A. Gogoll, L. Tranvik & E. Rydin, 2007. Degradation rates of organic phosphorus in lake sediment. Biogeochemistry 82: 15–28.CrossRefGoogle Scholar
  49. Robb, M., B. Greenop, Z. Goss, G. Douglas & J. A. Adeney, 2003. Application of PhoslockTM, an innovative phosphorus binding clay, to two Western Australian waterways: preliminary findings. Hydrobiologia 494: 237–243.CrossRefGoogle Scholar
  50. Robson, B. J. & D. P. Hamilton, 2004. Three-dimensional modelling of a Microcystis bloom event in the Swan River estuary, Western Australia. Ecological Modelling 174: 203–222.CrossRefGoogle Scholar
  51. Roden, E. E. & J. W. Edmonds, 1997. Phosphate mobilisation in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfide formation. Archiv für Hydrobiologie 139: 347–378.Google Scholar
  52. Schindler, D. W., R. E. Hecky, D. L. Findlay, M. P. Stainton, B. R. Parker, M. J. Paterson, K. G. Beaty, M. Lyng & S. E. M. Kasian, 2008. Eutrophication of lakes cannot be controlled by reduction of nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences 105: 11254–11258.Google Scholar
  53. Sherman, B. S., I. T. Webster, G. T. Jones & R. L. Oliver, 1998. Transitions between Aulacoseira and Anabaena dominance in a turbid river weir pool. Limnology and Oceanography 43: 1902–1915.Google Scholar
  54. Sinke, A. J. C., A. A. Cornelese, P. Keizer, O. F. R. van Tongeren & T. E. Cappenberg, 1990. Mineralisation, pore water chemistry and phosphorus release from peaty sediments in the eutrophic Loosdrecht lakes, the Netherlands. Freshwater Biology 3: 587–599.CrossRefGoogle Scholar
  55. Smolders, A. J. P., L. P. M. Lamers, E. C. H. E. T. Lucasseu, G. van der Velde & J. G. M. Roelops, 2006. Internal eutrophication: how it works and what to do about it – a review. Journal of Chemical Ecology 22: 93–111.Google Scholar
  56. Søndergaard, M., J. Windolf & E. Jeppesen, 1996. Phosphorus fractions and profiles in the sediment of shallow Danish lakes as related to phosphorus load, sediment composition and lake chemistry. Water Research 30: 992–1002.CrossRefGoogle Scholar
  57. Søndergaard, M., E. Jeppesen & J. P. Jensen, 2000. Hypolimnetic nitrate treatment to reduce internal phosphorus loading in a stratified lake. Lake and Reservoir Management 16: 195–204.CrossRefGoogle Scholar
  58. Søndergaard, M., J. P. Jensen & E. Jeppesen, 2003a. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506: 135–145.CrossRefGoogle Scholar
  59. Søndergaard, M., E. Jeppesen & J. P. Jensen, 2003b. Internal phosphorus loading and the resilience of Danish lakes. Lake Line 23: 17–20.Google Scholar
  60. Spears, B. M., L. Carvalho & D. M. Paterson, 2007. Phosphorus partitioning in a shallow lake: implications for water quality management. Water and Environment Journal 21: 47–53.CrossRefGoogle Scholar
  61. Tanner, C. C., K. Caldwell, D. Ray & J. McIntosh, 2007. Constructing wetland to treat nutrient-rich inflow to Lake Okaro, Rotorua. In: Proceedings of Stormwater 2007: 5th South Pacific Stormwater Conference, 16–18 May, Auckland, New Zealand.Google Scholar
  62. Vant, W. N. & R. J. Davies-Colley, 1986. Relative importance of clarity determinants in Lakes Okaro and Rotorua. New Zealand Journal of Marine and Freshwater Research 20: 355–363.CrossRefGoogle Scholar
  63. Vopel, K., M. Gibbs, C. W. Hickey & J. Quinn, 2008. Modification of sediment-water solute exchange by sediment-capping agents: effects on O2 and pH. Marine and Freshwater Research 59: 1101–1110.CrossRefGoogle Scholar
  64. Wauer, G., T. Gonsiorczyk, K. Kretschmer, P. Casper & R. Koschel, 2005. Sediment treatment with a nitrate-storing compound to reduce phosphorus release. Water Research 39: 494–500.CrossRefPubMedGoogle Scholar
  65. Welch, E. B. & G. D. Cooke, 1999. Effectiveness and longevity of phosphorus inactivation with alum. Lake and Reservoir Management 15: 5–27.CrossRefGoogle Scholar
  66. Yamada, H., M. Kayama, K. Saito & M. Hara, 1987. Suppression of phosphate liberation from sediment by using iron slag. Water Research 21: 325–333.CrossRefGoogle Scholar
  67. Yeates, P. S. & J. Imberger, 2003. Pseudo two-dimensional simulations of internal and boundary fluxes in stratifies lakes and reservoirs. International Journal of River Basin Management 1: 297–319.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Deniz Özkundakci
    • 1
    Email author
  • David P. Hamilton
    • 1
  • Max M. Gibbs
    • 2
  1. 1.Centre for Biodiversity and Ecology Research, University of WaikatoHamiltonNew Zealand
  2. 2.NIWA, National Institute of Water and Atmospheric Research LtdHamiltonNew Zealand

Personalised recommendations