Skip to main content

Advertisement

Log in

Lack of correlation between surface macrofauna, meiofauna, erosion threshold and biogeochemical properties of sediments within an intertidal mudflat and mangrove forest

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This article describes the relationship between 10 selected properties of the sediments (chlorophyll a and b, colloidal and total carbohydrate, water concentration, sediment type, organic matter, erosion threshold and erosion rate) and meio- and macrofauna within and among three different habitats in an urbanized intertidal mudflat/mangrove forest in Tambourine Bay, Sydney Harbour, Australia. Many of the biogeochemical variables were significantly different among habitats, often grading from mudflat to mangrove canopy. In contrast to previous studies, patterns of distribution of macrofauna among habitats were weak. For the meiofauna, only copepods showed any significant difference among habitats, with the greatest numbers in the open mudflat habitat and least under the mangrove canopy. There was a gradient in fauna among the habitats; overall macrofauna abundances were greatest under the mangrove canopy and least on the mudflat, while meiofauna abundance was greatest in the pneumatophore habitat and least under the canopy. Correlations between fauna and properties of sediment were generally weak. When the habitats were analysed separately, some correlations were strengthened but relationships were inconsistent. Thus, while some taxa vary significantly among habitats there was not a strong relationship between biogeochemical properties and either macro- or meiofauna. This suggests that localised factors other than the measured properties of the sediments are driving patterns in fauna at these small scales, which requires further investigation to be unravelled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen, T. J., K. T. Jensen, L. Lund-Hansen, K. N. Mouritsen & M. Pejrup, 2002. Enhanced erodibility of fine-grained marine sediments by Hydrobia ulvae. Journal of Sea Research 48: 51–58.

    Article  Google Scholar 

  • Black, K. S., T. J. Tolhurst, D. M. Paterson & S. E. Hagerthey, 2002. Working with natural cohesive sediments. Journal of Hydraulic Engineering-Asce 128: 2–8.

    Article  Google Scholar 

  • Chapman, M. G., 1998. Relationships between spatial patterns of benthic assemblages in a mangrove forest using different levels of taxonomic resolution. Marine Ecology Progress Series 162: 71–78.

    Article  Google Scholar 

  • Chapman, M. G. & T. J. Tolhurst, 2004. The relationship between invertebrate assemblages and bio-dependant properties of sediment in urbanized temperate mangrove forests. Journal of Experimental Marine Biology and Ecology 304: 51–73.

    Article  Google Scholar 

  • Chapman, M. G. & T. J. Tolhurst, 2007. Relationships between benthic macrofauna and biogeochemical properties of sediments at different spatial scales and among different habitats in mangrove forests. Journal of Experimental Marine Biology and Ecology 343: 96–109.

    Article  CAS  Google Scholar 

  • Chapman, M. G., T. J. Tolhurst, R. J. Murphy & A. J. Underwood, 2010. Complex and inconsistent patterns of variation in benthos, micro-algae and sediment over multiple spatial scales. Marine Ecology Progress Series 398: 33–47.

    Article  CAS  Google Scholar 

  • Clarke, K. R., 1993. Nonparametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Coull, B. C., 1999. Role of meiobenthos in estuarine soft-bottom habitats. Australian Journal of Ecology 24: 327–343.

    Article  Google Scholar 

  • De Biasi, A. M., C. N. Bianchi & C. Morri, 2003. Analysis of macrobenthic communities at different taxonomic levels: an example from an estuarine environment in the Ligurian Sea (NW Mediterranean). Estuarine Coastal and Shelf Science 58: 99–106.

    Article  Google Scholar 

  • Defew, E. C., T. J. Tolhurst & D. M. Paterson, 2002. Site-specific features influence sediment stability of intertidal flats. Hydrology and Earth System Sciences 6: 971–981.

    Article  Google Scholar 

  • Dye, A. H., 1978. An ecophysiological study of the meiofauna of the Swartkops Estuary. 2. The meiofauna: composition, distribution, seasonal fluctuation and biomass. Zoologica Africana 13: 19–32.

    Google Scholar 

  • Dye, A. H., 1983. Vertical and horizontal distribution of meiofauna in mangrove sediments in Transkei, Southern Africa. Estuarine, Coastal and Shelf Science 16: 591–598.

    Article  Google Scholar 

  • Dye, A. H., 2006. Persistent effects of physical disturbance on meiobenthos in mangrove sediments. Marine Environmental Research 62: 341–355.

    Article  CAS  PubMed  Google Scholar 

  • Dye, A. H. & F. Barros, 2005a. Meiobenthos in intermittently open/closed coastal lakes in New South Wales: spatial and temporal patterns in densities of major taxa. Marine and Freshwater Research 56: 1055–1067.

    Article  Google Scholar 

  • Dye, A. H. & F. Barros, 2005b. Spatial patterns in macrofaunal assemblages in intermittently closed/open coastal lakes in New South Wales, Australia. Estuarine, Coastal and Shelf Science 64: 357–371.

    Article  Google Scholar 

  • Fernandes, S., P. Sobral & M. H. Costa, 2006. Nereis diversicolor effect on the stability of cohesive intertidal sediments. Aquatic Ecology 40: 567–579.

    Article  CAS  Google Scholar 

  • Flemming, B. W. & M. T. Delafontaine, 2000. Mass physical properties of muddy intertidal sediments: some applications, misapplications and non-applications. Continental Shelf Research 20: 1179–1197.

    Article  Google Scholar 

  • Friend, P. L. & C. L. Amos, 2007. Natural coastal mechanisms—flume and field experiments on links between biology, sediments, and flow. Continental Shelf Research 27: 1017–1019.

    Article  Google Scholar 

  • Friend, P. L., P. Ciavola, S. Cappucci & R. Santos, 2003. Bio-dependent bed parameters as a proxy tool for sediment stability in mixed habitat intertidal areas. Continental Shelf Research 23: 1899–1917.

    Article  Google Scholar 

  • Gaston, G. R., C. F. Rokocinski, S. S. Brown & C. M. Cleveland, 1998. Trophic function in estuaries: response of macrobenthos to natural and contaminant gradients. Marine and Freshwater Research 49: 833–846.

    Article  Google Scholar 

  • Gwyther, J. & P. G. Fairweather, 2002. Colonisation by epibionts and meiofauna of real and mimic pneumatophores in a cool temperate mangrove habitat. Marine Ecology Progress Series 229: 137–149.

    Article  Google Scholar 

  • Herman, P. M. J. & C. Heip, 1988. On the use of meiofauna in ecological monitoring–who needs taxonomy? Marine Pollution Bulletin 19: 665–668.

    Article  CAS  Google Scholar 

  • Herman, P. M. J., J. J. Middelburg & C. H. R. Heip, 2001. Benthic community structure and sediment processes on an intertidal flat: results from the ECOFLAT project. Continental Shelf Research 21: 2055–2071.

    Article  Google Scholar 

  • Honeywill, C., D. N. Paterson & S. E. Hagerthey, 2002. Determination of microphytobenthic biomass using pulse-amplitude modulated minimum fluorescence. European Journal of Phycology 37: 485–492.

    Article  Google Scholar 

  • Johnson, R. G., 1970. Variations in diversity within benthic marine communities. American Natauralist 104: 285–300.

    Article  Google Scholar 

  • Kalejta, B. & P. A. R. Hockey, 1991. Distribution, abundance and productivity of benthic invertebrates at the Berg River Estuary, South Africa. Estuarine, Coastal and Shelf Science 33: 175–191.

    Article  Google Scholar 

  • Kihslinger, R. L. & S. A. Woodin, 2000. Food patches and a surface deposit feeding spionid polychaete. Marine Ecology Progress Series 201: 233–239.

    Article  Google Scholar 

  • Krager, C. D. & S. A. Woodin, 1993. Spatial persistence and sediment disturbance of an arenicolid polychaete. Limnology and Oceanography 38: 509–520.

    Article  Google Scholar 

  • Lee, S. Y., 1999a. Tropical mangrove ecology: physical and biotic factors influencing ecosystem structure and function. Australian Journal of Ecology 24: 355–366.

    Article  Google Scholar 

  • Lee, S. Y., 1999b. The effect of mangrove leaf litter enrichment on macrobenthic colonization of defaunated sandy substrates. Estuarine Coastal and Shelf Science 49: 703–712.

    Article  Google Scholar 

  • Lee, S. Y., 2008. Mangrove macrobenthos: assemblages, services, and linkages. Journal of Sea Research 59: 16–29.

    Article  Google Scholar 

  • Levin, L. A., 1984. Life history and dispersal patterns in a dense infaunal polychaete assemblage: community structure and response to disturbance. Ecology 65: 1185–1200.

    Article  Google Scholar 

  • Li, J., M. Vincx, P. M. J. Herman & C. Heip, 1997. Monitoring meiobenthos using cm-, m- and km-scales in the Southern Bight of the North Sea. Marine Environmental Research 43: 265–278.

    Article  Google Scholar 

  • McIntyre, A. D., 1969. Ecology of marine meiobenthos. Biological Reviews 44: 245–290.

    Article  Google Scholar 

  • Mirto, S., T. La Rosa, C. Gambi, R. Danovarro & A. Mazzola, 2002. Nematode community response to fish farm impact in the Western Mediterranean. Environmental Pollution 116: 203–214.

    Article  CAS  PubMed  Google Scholar 

  • Morrisey, D. J., G. A. Skilleter, J. I. Ellis, B. R. Burns, C. E. Kemp & K. Burt, 2003. Differences in benthic fauna and sediment among mangrove (Avicennia marina var. australasica) stands of different ages in New Zealand. Estuarine Coastal and Shelf Science 56: 581–592.

    Article  Google Scholar 

  • Murphy, R. J. & T. J. Tolhurst, 2009. Effects of experimental manipulation of algae and fauna on the properties of intertidal soft sediments. Journal of Experimental Marine Biology and Ecology 379: 77–84.

    Article  Google Scholar 

  • Murphy, R. J., A. J. Underwood, T. J. Tolhurst & M. G. Chapman, 2008. Field-based remote-sensing for experimental intertidal ecology: case studies using hyperspatial and hyperspectral data for New South Wales (Australia). Remote Sensing of Environment 112: 3353–3365.

    Article  Google Scholar 

  • Olafsson, E., S. Carlstrom & S. G. M. Ndaro, 2000. Meiobenthos of hypersaline tropical mangrove sediment in relation to spring tide inundation. Hydrobiologia 426: 57–64.

    Article  Google Scholar 

  • Paterson, D. M., T. J. Tolhurst, J. A. Kelly, C. Honeywill, E. de Deckere, V. Huet, S. A. Shayler, K. S. Black, J. de Brouwer & I. Davidson, 2000. Variations in sediment properties, Skeffling mudflat, Humber Estuary, UK. Continental Shelf Research 20: 1373–1396.

    Article  Google Scholar 

  • Perkins, R. G., C. Honeywill, M. Consalvey, H. A. Austin, T. J. Tolhurst & D. M. Paterson, 2003. Changes in microphytobenthic chlorophyll a and EPS resulting from sediment compaction due to de-watering: opposing patterns in concentration and content. Continental Shelf Research 23: 575–586.

    Article  Google Scholar 

  • Teske, P. R. & T. Wooldridge, 2001. A comparison of the macrobenthic faunas of permanently open and temporally open/closed South African estuaries. Hydrobiologia 464: 227–243.

    Article  Google Scholar 

  • Thrush S. F., V. J. Cummings, P. K. Dayton, R. Ford, and others, 1997. Matching the outcome of small-scale density manipulation experiments with larger scale patterns an example of bivalve adult/juvenile interactions. Journal of Experimental Marine Biology and Ecology 216: 153–169.

    Google Scholar 

  • Tolhurst, T. J., 2009. Weak diurnal changes in the biochemical properties and benthic macrofauna of urbanised mangrove forests and mudflats. Hydrobiologia 636: 101–117.

    Article  CAS  Google Scholar 

  • Tolhurst, T. J. & M. G. Chapman, 2005. Spatial and temporal variation in the sediment properties of an intertidal mangrove forest: implications for sampling. Journal of Experimental Marine Biology and Ecology 317: 213–222.

    Article  Google Scholar 

  • Tolhurst, T. J. & M. G. Chapman, 2007. Patterns in biogeochemical properties of sediments and benthic animals among different habitats in mangrove forests. Austral Ecology 32: 775–788.

    Article  Google Scholar 

  • Tolhurst, T. J., K. S. Black, S. A. Shayler, S. Mather, I. Black, K. Baker & D. M. Paterson, 1999. Measuring the in situ erosion shear stress of intertidal sediments with the Cohesive Strength Meter (CSM). Estuarine Coastal and Shelf Science 49: 281–294.

    Article  Google Scholar 

  • Tolhurst, T. J., B. Jesus, V. Brotas & D. M. Paterson, 2003. Diatom migration and sediment armouring—an example from the Tagus Estuary, Portugal. Hydrobiologia 503: 183–193.

    Article  CAS  Google Scholar 

  • Tolhurst, T. J., A. J. Underwood, R. G. Perkins & M. G. Chapman, 2005. Content versus concentration: effects of units on measuring the biogeochemical properties of soft sediments. Estuarine Coastal and Shelf Science 63: 665–673.

    Article  CAS  Google Scholar 

  • Tolhurst, T. J., E. C. Defew, J. F. C. de Brouwer, K. Wolfstein, L. J. Stal & D. M. Paterson, 2006. Small-scale temporal and spatial variability in the erosion threshold of intertidal sediments. Continental Shelf Research 26(3): 351–362.

    Article  Google Scholar 

  • Underwood, A. J., M. G. Chapman & S. D. Connell, 2000. Observations in ecology: you can’t make progress on processes without understanding the patterns. Journal of Experimental Marine Biology and Ecology 250: 97–115.

    Article  PubMed  Google Scholar 

  • Van Colen, C., F. Montserrat, K. Verbist, M. Vincx, M. Steyaert, J. Vanaverbeke, P. M. J. Herman, S. Degraer & T. Ysebaert, 2009. Tidal flat nematode responses to hypoxia and subsequent macrofauna-mediated alterations of sediment properties. Marine Ecology Progress Series 381: 189–197.

    Article  Google Scholar 

  • Vardy, S., J. E. Saunders, T. J. Tolhurst, P. A. Davies & D. M. Paterson, 2007. Calibration of the high-pressure cohesive strength meter (CSM). Continental Shelf Research 27: 1190–1199.

    Article  Google Scholar 

  • Werry, J. & S. Y. Lee, 2005. Grapsid crabs mediate link between mangrove litter production and estuarine planktonic food chains. Marine Ecology Progress Series 293: 165–176.

    Article  Google Scholar 

  • Woodin, S. A., S. M. Lindsay & D. S. Wethey, 1995. Process-specific recruitment cues in marine sedimentary systems. Biological Bulletin 189: 49–58.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Australian Research Council through their Special Research Centre programmes, the Centre for Research on Ecological Impacts of Coastal Cities and the University of Sydney. Many research support staff in the Centre assisted in the field and laboratory, which is gratefully acknowledged. T. J. Tolhurst had additional support during writing from the University of East Anglia. The project benefited from numerous discussions with M. G. Chapman and A. J. Underwood.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Tolhurst.

Additional information

Handling editor: P. Viaroli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolhurst, T.J., Defew, E.C. & Dye, A. Lack of correlation between surface macrofauna, meiofauna, erosion threshold and biogeochemical properties of sediments within an intertidal mudflat and mangrove forest. Hydrobiologia 652, 1–13 (2010). https://doi.org/10.1007/s10750-010-0311-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0311-y

Keywords

Navigation