Skip to main content
Log in

Effects of nutrients on growth of the red-tide dinoflagellate Gyrodinium instriatum Freudenthal et Lee and a possible link to blooms of this species

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We investigated the impact of different nitrogen (N) and phosphorus (P) compounds and concentrations on the growth of Gyrodinium instriatum Freudenthal et Lee in laboratory experiments, and possible links to blooms of this species at Hakozaki Fishing Port, Fukuoka, Japan. G. instriatum utilized only inorganic N compounds as N sources for growth. In contrast, G. instriatum utilized many inorganic and organic phosphorus compounds. We used the Monod equation to describe the growth rate of G. instriatum in N- or P-limited batch cultures as a function of ambient nutrient concentrations. Kinetic growth parameters for maximum specific growth rate (μmax) and half-saturation nutrient concentration (K S) were 0.57 divisions d−1 and 14.2 μmol l−1, respectively, under N-limitation and 0.65 divisions d−1 and 1.75 μmol l−1, respectively, under P-limitation. Compared with these K S values, all in situ average dissolved inorganic nitrogen (DIN) concentrations in Hakozaki Fishing Port were higher than K S for N, but all in situ average dissolved inorganic phosphorus (DIP) concentrations were lower than K S for P, whether a red tide occurred or not bloom. Moreover, average DIP concentration in April (a month critical to red-tide genesis) of 2004 (a non-red-tide year) was less than half those in 2002 and 2003 (red-tide years). Thus, differences in DIP concentrations may be an important factor controlling blooms of G. instriatum in Hakozaki Fishing Port.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bonin, D. J. & S. Y. Maestrini, 1981. Importance of organic nutrients for phytoplankton growth in natural environments: implications for algal species succession. Canadian Bulletin of Fisheries and Aquatic Sciences 210: 279–291.

    Google Scholar 

  • Campbell, P. H., 1973. Studies on brackish water phytoplankton. Sea Grant Publication UNC-SG-73-07, University of North Carolina. Chapel Hill, North Carolina.

    Google Scholar 

  • Droop, M. R., 1968. Vitamin B12 and marine ecology. IV. The kinetics of uptake growth and inhibition in Monochrysis lutheri. Journal of the Marine Biological Association of the United Kingdom 48: 689–733.

    Article  CAS  Google Scholar 

  • Flynn, K. J. & I. Butler, 1986. Nitrogen sources for the growth of marine microalgae: role of dissolved free amino acids. Marine Ecology Progress Series 34: 281–304.

    Article  CAS  Google Scholar 

  • Guillard, R. R. L., 1973. Division rate. In Stein, J. R. (ed.), Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University Press, Cambridge: 289–311.

    Google Scholar 

  • Hulburt, E. M., 1957. The taxonomy of unarmored Dinophyceae of shallow embayments on Cape-Cod, Massachusetts. The Biological Bulletin 112: 196–219.

    Article  Google Scholar 

  • Imai, I. & M. Yamaguchi, 1994. A simple technique for establishing axenic cultures of phytoflagellates. Bulletin of the Japanese Society of Microbial Ecology 9: 15–17.

    Google Scholar 

  • Iwasaki, H., 1979. Physiological ecology of red tide flagellates. In Levandovsky, M. & S. H. Hunter (eds), Biochemistry and Physiology of Protozoa, Vol. 1, 2nd ed. Academic Press, New York: 357–393.

    Google Scholar 

  • Jimenéz, R., 1993. Ecological factors related to Gyrodinium instriatum bloom in the inner estuary of the Gulf of Guayaquil. In Smayda, T. J. & Y. Shimizu (Eds), Toxic Phytoplankton Blooms in the Sea. Proceedings of the 5th International Conference on Toxic Marine Phytoplankton, Newport, Rhode Island, U.S.A., 28 October–1 November 1991. Elsevier, Amsterdam: 257–262.

  • Kim, D. I., 2003. Physiological and ecological studies on harmful red tide dinoflagellate Cochlodinium polykrikoides (Margalef). Ph.D. dissertation, Kyushu University, Fukuoka (in Japanese).

  • Kofoid, C. A. & O. Swezy, 1921. The free-living unarmored Dinoflagellata. Memoirs University of California, Vol. 5. California Press, Berkeley.

  • Lee, Y. S., 2008. Utilization of various nitrogen, phosphorus, and selenium compounds by Cochlodinium polykrikoides. Journal of Environmental Biology 29: 799–804.

    CAS  PubMed  Google Scholar 

  • Mahoney, J. B. & J. J. A. McLaughlin, 1977. Association of phytoflagellate blooms in Lower New York Bay with hypertrophication. Journal of Experimental Marine Biology and Ecology 28: 53–65.

    Article  CAS  Google Scholar 

  • McLachlan, J., 1973. Growth media-marine. In Stein, J. R. (ed.), Handbook of Phycological Methods. Culture Methods and Growth Mesurements. Cambridge University Press, Cambridge: 25–51.

    Google Scholar 

  • Monod, J., 1949. The growth of bacterial cultures. Annual Review of Microbiology 3: 371–394.

    Article  CAS  Google Scholar 

  • Nagasoe, S., D. I. Kim, Y. Shimasaki, Y. Oshima, M. Yamaguchi & T. Honjo, 2006a. Effects of temperature, salinity and irradiance on the growth of the red tide dinoflagellate Gyrodinium instriatum Freudenthal et Lee. Harmful Algae 5: 20–25.

    Article  Google Scholar 

  • Nagasoe, S., S. Toda, Y. Shimasaki, Y. Oshima, T. Uchida & T. Honjo, 2006b. Growth inhibition of Gyrodinium instriatum (Dinophyceae) by Skeletonema costatum (Bacillariophyceae). African Journal of Marine Science 28: 325–329.

    Google Scholar 

  • Nakamura, Y. & M. M. Watanabe, 1983. Growth characteristics of Chattonella antiqua Part 2. Effects of nutrients on growth. Journal of the Oceanographical Society of Japan 39: 151–155.

    Article  Google Scholar 

  • Norris, L. & K. K. Chew, 1975. Effect of environmental factors on growth of Gonyaulax catenella. In LoCicero, V. R. (ed.), Proceedings of the first international conference on Toxic Dinoflagellate Blooms, November, 1974, Boston, Massachusetts. Massachusetts Science and Technology Foundation, Massachusetts: 143–152.

    Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.

    Article  Google Scholar 

  • Sharp, J. H., 1983. The distributions of inorganic nitrogen and dissolved and particulate organic nitrogen in the sea. In Carpenter, E. J. & D. G. Capone (eds), Nitrogen in the Marine Environment. Academic Press, New York: 1–35.

    Google Scholar 

  • Shikata, T., S. Nagasoe, T. Matsubara, Y. Yamasaki, Y. Shimasaki, Y. Oshima, T. Uchida, I. R. Jenkinson & T. Honjo, 2008. Encystment and excystment of Gyrodinium instriatum Freudenthal et Lee. Journal of Oceanography 64: 355–365.

    Article  CAS  Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A Practical Handbook of Seawater Analysis, Vol. 167, 2nd ed. Bulletin of the Fiseries Research Board of Canada, Ottawa.

  • Takahashi, M. & N. Fukazawa, 1982. A mechanism of “red-tide” formation. II. Effect of selective nutrient stimulation on the growth of different phytoplankton species in natural water. Marine Biology 70: 267–273.

    Article  Google Scholar 

  • Tatewaki, M. & L. Provasoli, 1964. Vitamin requirements of three species of Antithamnion. Botanica Marina 6: 193–203.

    Article  CAS  Google Scholar 

  • Tilman, D., 1976. Ecological competition between algae—experimental confirmation of resource-based competition theory. Science 192: 463–465.

    Article  Google Scholar 

  • Toriumi, S., 1980. Synopsis of red tide organisms. Fish Agency, Japan Government, Tokyo (in Japanese).

    Google Scholar 

  • Uchida, T., Y. Matsuyama, M. Yamaguchi & T. Honjo, 1996. The life cycle of Gyrodinium instriatum (Dinophyceae) in culture. Phycological Research 44: 119–123.

    Article  Google Scholar 

  • van Boekel, W. H. M., 1991. Ability of Phaeocystis sp. to grow on organic phosphates: direct measurement and prediction with the use of an inhibition constant. Journal of Plankton Research 13: 959–970.

    Article  Google Scholar 

  • Wang, H. K., L. M. Huang, X. P. Huang, X. Y. Song, H. J. Wang, N. J. Wu & C. Li, 2003. A red tide caused by Gyrodinium instriatum and its environmental characters in Zhujiang River estuary. Redai Haiyang Xuebao 22: 55–62. (in Chinese with English abstract).

    Google Scholar 

  • Watanabe, M. M., Y. Nakamura, S. Mori & S. Yamochi, 1982. Effects of physico-chemical factors and nutrients on the growth of Heterosigma akashiwo Hada from Osaka Bay, Japan. Japanese Journal of Phycology 30: 279–288.

    Google Scholar 

  • Yamaguchi, M., 1994. Physiological ecology of the red tide flagellate Gymnodinium nagasakiense (Dinophyceae). Mechanism of the red tide occurrence and its prediction. Bulletin of Nansei National Fisheries Research Institute 27: 251–394. (in Japanese with English abstract).

    Google Scholar 

  • Yamaguchi, M., 1996. Keisou-rui no eiyouen-riyou-tokusei oyobi Chattonella tono eiyouen-kyougou. In Agriculture, Forestry and Fisheries Research Council, Ministry of Agriculture, Forestry and Fisheries of Japan (ed.), Yūgai-Akashio no Seitaigakuteki-Seigyo ni yoru Higai-Boujyo-Gijyutsu no Kaihatsu ni kansuru Kenkyu. Nourinkousai-kai, Tokyo: 44–59 (in Japanese).

  • Yamaguchi, M., S. Itakura & T. Uchida, 2001. Nutrition and growth kinetics in nitrogen- or phosphorus-limited cultures of the ‘novel red tide’ dinoflagellate Heterocapsa circularisquama (Dinophyceae). Phycologia 40: 313–318.

    Article  Google Scholar 

  • Yamasaki, Y., S. Nagasoe, T. Matsubara, T. Shikata, Y. Shimasaki, Y. Oshima & T. Honjo, 2007. Allelopathic interactions between the bacillariophyte Skeletonema costatum and the raphidophyte Heterosigma akashiwo. Marine Ecology Progress Series 339: 83–92.

    Article  CAS  Google Scholar 

  • Yanagi, T., 1999. Seasonal variations in nutrient budgets of Hakata Bay, Japan. Journal of Oceanography 55: 439–448.

    Article  CAS  Google Scholar 

  • Yanagi, T. & G. Onitsuka, 2000. Seasonal Variation in lower trophic level ecosystem of Hakata Bay, Japan. Journal of Oceanography 56: 233–243.

    Article  Google Scholar 

  • Zhang, Y., F. Fu, E. Whereat, K. J. Coyne & D. A. Hutchins, 2006. Bottom-up controls on a mixed-species HAB assemblage: A comparison of sympatric Chattonella subsalsa and Heterosigma akashiwo (Raphidophyceae) isolates from the Delaware Inland Bays, USA. Harmful Algae 5: 310–320.

    Article  CAS  Google Scholar 

  • Zhu, X. S., B. Yi, Y. H. Dong & L. F. Yang, 2004. A primary study on one of the “bilateral” red tide at Chi Bay of Pearl River Estuary. Haiyang Huanjing Kexue 23: 41–44. (in Chinese with English abstract).

    Google Scholar 

Download references

Acknowledgements

The authors thank the staff of Fukuoka Fisheries and Marine Technology Research Center (FFMTRC), especially C. Yamamoto, for permitting us to use the autoanalyzer and other FFMTRC facilities. We also thank Dr. Y. Matsuyama for providing helpful insights on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sou Nagasoe.

Additional information

Handling editor: D. P. Hamilton

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagasoe, S., Shikata, T., Yamasaki, Y. et al. Effects of nutrients on growth of the red-tide dinoflagellate Gyrodinium instriatum Freudenthal et Lee and a possible link to blooms of this species. Hydrobiologia 651, 225–238 (2010). https://doi.org/10.1007/s10750-010-0301-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0301-0

Keywords

Navigation