Skip to main content
Log in

The role of seedlings and seed bank viability in the recovery of Chesapeake Bay, USA, Zostera marina populations following a large-scale decline

  • SEAGRASS ECOSYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The objective of this study was to quantify the spatial and temporal recolonization characteristics of Zostera marina beds in the lower Chesapeake Bay following large scale declines in the late summer of 2005. Transects were established and monitored monthly for changes in eelgrass abundance at three sites (two downriver, one upriver) in the York River from April–October 2006 and 2007. Measurements included percent bottom cover, above ground biomass, shoot density, shoot origin (seedling or vegetative), seed bank abundance and seed viability. During 2006, the eelgrass beds at all sites recovered with seedlings providing the largest proportion of the total shoot abundance. This trend shifted in 2007 and surviving vegetative shoots were the dominant component of shoot standing crop. A second consecutive decline related to low light conditions occurred during the summer of 2006 in the upriver site and recovery there was minimal in 2007. These results highlight that after a single die off event, seed germination with subsequent seedling growth is the principal method for revegetation in lower Chesapeake Bay Z. marina beds. However, no viable seeds remain in the seed bank during this first year of recovery and shoots produced by the seedling growth do not flower and produce seeds until their second year of growth. Therefore the seed-bank density is low and is not immediately replenished. This suggests that the resiliency of perennial Chesapeake Bay Z. marina populations to repeated disturbances is restricted and repeated annual stress may result in much longer term bed loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Allison, P. D., 1999. Logistic Regression Using the SAS System: Theory and Application. SAS Institute Inc., Cary, NC.

    Google Scholar 

  • Association of Official Seed Analysts, 1981. Rules for testing seeds. Journal of Seed Technology 6: 1–126.

    Google Scholar 

  • Baker, H. G., 1989. Some aspects of the natural history of seed-banks. In Leck, M. A., V. T. Parker & R. L. Simpson (eds), Ecology of Soil Seed-banks. Academic Press Inc., San Diego: 9–21.

    Google Scholar 

  • Batiuk, R. A., P. Bergstrom, M. Kemp, E. Koch, L. Murray, J. C. Stevenson, R. Bartleson, V. Carter, N. B. Rybicki, C. Gallegos, L. Karrh, M. Naylor, D. Wilcox, K. Moore, S. Ailstock & M. Teichberg, 2000. Chesapeake Bay submerged aquatic vegetation water quality and habitat-based requirements and restoration targets: A second technical synthesis. Chesapeake Bay Program, U.S. Environmental Protection Agency, Annapolis, MD.

    Google Scholar 

  • Bintz, J. C. & S. W. Nixon, 2001. Responses of Zostera marina seedlings to reduced light. Marine Ecology Progress Series 223: 133–141.

    Article  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, Vol. 2. Springer Science and Business Media Inc., New York.

    Google Scholar 

  • Churchill, A. C., 1992. Growth characteristics of Zostera marina seedlings under anaerobic conditions. Aquatic Botany 43: 379–392.

    Article  Google Scholar 

  • den Hartog, C., 1970. The Sea-Grasses of the World. North-Holland, Amsterdam.

    Google Scholar 

  • Fishman, J. R. & R. J. Orth, 1996. Effects of predation on Zostera marina L. seed abundance. Journal of Experimental Marine Biology and Ecology 198: 11–26.

    Article  Google Scholar 

  • Frederiksen, M., D. Krause-Jensen, M. Holmer & J. S. Laursen, 2004. Long-term changes in area distribution of eelgrass (Zostera marina) in Danish coastal waters. Aquatic Botany 78: 167–181.

    Article  Google Scholar 

  • Greve, T. M., D. Krause-Jensen, M. B. Rasmussen & P. B. Christensen, 2005. Means of rapid eelgrass (Zostera marina L.) recolonization in former dieback areas. Aquatic Botany 82: 143–156.

    Article  Google Scholar 

  • Harley, C. D. G., A. R. Hughes, K. M. Hultgren, B. G. Miner, C. J. B. Sorte, C. S. Thornber, L. F. Rodriguez, L. Tomanek & S. L. Williams, 2006. The impacts of climate change in coastal marine systems. Ecology Letters 9: 228–241.

    Article  PubMed  Google Scholar 

  • Harrison, P. G., 1991. Mechanisms of seed dormancy in an annual population of Zostera marina (eelgrass) from The Netherlands. Canadian Journal of Botany 69: 1972–1976.

    Article  Google Scholar 

  • Harrison, P. G., 1993. Variations in demography of Zostera marina and Z. noltii on an intertidal gradient. Aquatic Botany 45: 63–77.

    Article  Google Scholar 

  • Harwell, M. C. & R. J. Orth, 2002. Seed-bank patterns in Chesapeake Bay eelgrass (Zostera marina L.): a bay-wide perspective. Estuaries 25: 1196–1204.

    Article  Google Scholar 

  • Jarvis, J. C., 2009. Function of Seed-Bank Ecology in Mid-Atlantic Semi-Annual and Perennial Zostera marina beds. Ph.D. Dissertation, The College of William & Mary.

  • Keddy, C. J., 1987. Reproduction of annual eelgrass: variation among habitats andcomparison with perennial eelgrass (Zostera marina L.). Aquatic Botany 27: 243–256.

    Article  Google Scholar 

  • Lakon, G., 1949. The topographical tetrazolium method for determining the germinating capacity of seeds. Plant Physiology 24: 389–394.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. S., J. I. Park, Y. K. Kim, S. R. Park & J. H. Kim, 2007. Recolonization of Zostera marina following destruction caused by red tide algal bloom: the role of new shoot recruitment from seed-banks. Marine Ecology Progress Series 342: 105–115.

    Article  CAS  Google Scholar 

  • Moore, K. A., 2004. Influence of seagrasses on water quality in shallow regions of the lower Chesapeake Bay. Journal of Coastal Research 45: 162–178.

    Google Scholar 

  • Moore, K. A. & J. C. Jarvis, 2008. Environmental factors affecting recent summertime eelgrass diebacks in the lower Chesapeake Bay: implications for long-term persistence. Journal of Coastal Research SI 55: 135–147.

    Article  Google Scholar 

  • Moore, K. A., R. J. Orth & J. F. Nowak, 1993. Environmental regulation of seed germination in Zostera marina L. (eelgrass) in Chesapeake Bay: Effects of light, oxygen, and sediment burial. Aquatic Botany 45: 79–91.

    Article  Google Scholar 

  • Moore, K. A., D. J. Wilcox & R. J. Orth, 2000. Analysis of the abundance of submersed aquatic vegetation communities in the Chesapeake Bay. Estuaries 23: 115–127.

    Article  Google Scholar 

  • Morita, T., H. Okumura, M. Abe, A. Kurashima & M. Maegawa, 2007. Density and distribution of seeds in bottom sediments in Zostera marina beds in Ago Bay, central Japan. Aquatic Botany 87: 38–42.

    Article  Google Scholar 

  • Nakaoka, M., 2002. Predation on seeds of seagrasses Zostera marina and Zostera caulescens by a tanaid crustacean Zeuxo sp. Aquatic Botany 72: 99–106.

    Article  Google Scholar 

  • Neckles, H. A., F. T. Short, S. Barker & B. S. Kopp, 2005. Disturbance of eelgrass Zostera marina by commercial mussel Mytilus edulis harvesting in Maine: dragging impacts and habitat recovery. Marine Ecology Progress Series 285: 57–73.

    Article  Google Scholar 

  • Nejrup, L. B. & M. F. Pedersen, 2008. Effects of salinity and water temperature on the ecological performance of Zostera marina. Aquatic Botany 88: 239–246.

    Google Scholar 

  • Ochieng, C. A., F. T. Short & D. I. Walker, 2010. Photosynthetic and morphological responses of eelgrass (Zostera marina L.) to a gradient of light conditions. Journal of Experimental Marine Biology and Ecology 382: 117–124.

    Article  CAS  Google Scholar 

  • Orth, R. J., 1976. The demise and recovery of eelgrass, Zostera marina, in the Chesapeake Bay, Virginia. Aquatic Botany 2: 141–159.

    Article  Google Scholar 

  • Orth, R. J. & K. A. Moore, 1983. Seed germination and seedling growth of Zostera marina L. (eelgrass) in the Chesapeake Bay. Aquatic Botany 15: 117–131.

    Article  Google Scholar 

  • Orth, R. J. & K. A. Moore, 1986. Seasonal and year-to-year variations in the growth of Zostera marina L. (eelgrass) in the lower Chesapeake Bay. Aquatic Botany 24: 335–341.

    Article  Google Scholar 

  • Orth, R. J., M. C. Harwell, E. M. Bailey, A. Bartholomew, J. T. Jawad, A. V. Lombana, K. A. Moore, J. M. Rhode & H. E. Woods, 2000. A review of issues in seagrass seed dormancy and germination: implications for conservation and restoration. Marine Ecology Progress Series 200: 277–288.

    Article  Google Scholar 

  • Phillips, R. C., W. S. Grant & C. P. McRoy, 1983. Reproductive strategies of eelgrass (Zostera marina L.). Aquatic Botany 16: 1–20.

    Article  Google Scholar 

  • Plus, M., J. M. Deslous-Paoli & F. Dagault, 2003. Seagrass (Zostera marina L.) bed recolonization after anoxia-induced full mortality. Aquatic Botany 77: 149–164.

    Article  Google Scholar 

  • Preston, B. L., 2004. Observed winter warming of the Chesapeake Bay Estuary (1949–2002): implications for ecosystem management. Environmental Management 34: 125–139.

    Article  PubMed  Google Scholar 

  • Sawma, J. T. & C. L. Mohler, 2002. Evaluating seed viability by an umimbibed seed crush test in comparison with the tetrazolium test. Weed Technology 16: 781–786.

    Article  Google Scholar 

  • Silberhorn, G. M., R. J. Orth & K. A. Moore, 1983. Anthesis and seed production in Zostera marina L. (eelgrass) from the Chesapeake Bay. Aquatic Botany 15: 133–144.

    Article  Google Scholar 

  • Simpson, G. M., 1990. Seed dormancy in grasses. Cambridge University Press, New York.

    Book  Google Scholar 

  • Strickland, J. & T. Parsons, 1972. A Practical Handbook of Seawater Analysis, Bulletin 167, 2nd ed. Fisheries Research Board Canada, Ottawa.

    Google Scholar 

  • Taylor, A. R. A., 1957. Studies of the development of Zostera marina L. II. Germination and seedling development. Canadian Journal of Botany 35: 681–695.

    Article  Google Scholar 

  • Tomlinson, P. B., 1974. Vegetative morphology and meristem dependence—the foundation of productivity in seagrasses. Aquaculture 4: 107–130.

    Article  Google Scholar 

  • van Lent, F. & J. M. Verschuure, 1994. Intraspecific variability of Zostera marina L. (eelgrass) in the estuaries and lagoons of the southwestern Netherlands II. Relation to environmental factors. Aquatic Botany 48: 59–75.

    Article  Google Scholar 

  • Zar, J. H., 1999. Biostatistical Analysis, Vol. 4. Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessie C. Jarvis.

Additional information

Guest editors: M. Holmer & N. Marbà / Dynamics and functions of seagrass ecosystems.

Note: Contribution number 3055 from the Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarvis, J.C., Moore, K.A. The role of seedlings and seed bank viability in the recovery of Chesapeake Bay, USA, Zostera marina populations following a large-scale decline. Hydrobiologia 649, 55–68 (2010). https://doi.org/10.1007/s10750-010-0258-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0258-z

Keywords

Navigation