, Volume 645, Issue 1, pp 53–68 | Cite as

Effects of low salinity on settlement and strobilation of scyphozoa (Cnidaria): Is the lion’s mane Cyanea capillata (L.) able to reproduce in the brackish Baltic Sea?

  • Sabine Holst
  • Gerhard Jarms


Several species of scyphozoan medusae occur in river estuaries and other brackish waters but it is often unknown if the planulae settle and the scyphopolyps reproduce in those low-salinity waters. In the present study, scyphozoan species from the German Bight (North Sea) were tested in laboratory experiments to investigate their tolerance of low salinity. Planula larvae released from medusae in salinity 32 were still active after the salinity was reduced to 10 (Cyanea capillata, Cyanea lamarckii) and to 7 (Chrysaora hysoscella) in laboratory treatments. Planulae did not settle on the undersides of floating substrates when salinity was reduced to <20. By contrast, planulae released from C. capillata medusae in Kiel Bight (western Baltic Sea) in salinity 15 developed into polyps in laboratory cultures. Polyps reared from planulae in salinity 36 survived a reduction to 12 (C. capillata, C. lamarckii) and to 8 (Aurelia aurita). Polyps of all tested species strobilated and released young medusae (ephyrae) in salinity 12. These results show a high tolerance of planulae and polyps to low salinity, indicating their possible occurrence in estuaries and brackish waters. In addition to laboratory observations, young C. capillata ephyrae were collected in the western Baltic Sea (Kiel Bight) in salinity 15, which indicates that they were probably released by a local polyp population. We suggest that the polyps of the painfully stinging lion’s mane, C. capillata, may be more widespread in the Baltic Sea than previously assumed and that the occurrence of the medusae may not only depend on inflow of water masses from the North Sea.


Scyphozoa Jellyfish Salinity Cyanea capillata Settlement Strobilation 



We thank the Biologische Anstalt Helgoland (Alfred Wegener Institute) for providing research facilities. This work is part of a PhD thesis conducted at the Biocenter Grindel and Zoological Museum in Hamburg (Holst, 2008, supported by EUROGEL (EUROpean GELatinous Zooplankton, European Commission Contract no. EVK-CT-2002-00074). The assistance of students and technicians is greatly appreciated. We are grateful to Drs. J. D. R. Houghton and J. E. Purcell for English language revisions.


  1. Arai, M. N., 1997. A Functional Biology of Scyphozoa. Chapman & Hall, London.Google Scholar
  2. Arai, M. N., 2009. The potential importance of podocysts to formation of scyphozoan blooms: a review. Hydrobiologia 616: 241–246.CrossRefGoogle Scholar
  3. Båmstedt, U., H. Ishii & M. B. Martinussen, 1997. Is the scyphomedusa Cyanea capillata (L.) dependent on gelatinous prey for its early development? Sarsia 82: 269–273.Google Scholar
  4. Barz, K. & H.-J. Hirche, 2007. Abundance, distribution and prey composition of scyphomedusae in the southern North Sea. Marine Biology 151: 1021–1033.CrossRefGoogle Scholar
  5. Barz, K., H. H. Hinrichsen & H.-J. Hirche, 2006. Scyphozoa in the Bornholm Basin (central Baltic Sea) – the role of advection. Journal of Marine Systems 60: 167–176.CrossRefGoogle Scholar
  6. Berrill, N. J., 1949. Developmental analysis of scyphomedusae. Bio Review 24: 393–410.CrossRefGoogle Scholar
  7. Brewer, R. H., 1976. Larval settling behavior in Cyanea capillata (Cnidaria: Scyphozoa). Biological Bulletin 150: 183–199.CrossRefGoogle Scholar
  8. Brewer, R. H., 1984. The influence of the orientation, roughness, and wettability of solid surfaces on the behavior and attachment of planulae of Cyanea (Cnidaria: Scyphozoa). Biological Bulletin 166: 11–21.CrossRefGoogle Scholar
  9. Brewer, R. H., 1989. The annual pattern of feeding, growth, and sexual reproduction in Cyanea (Cnidaria: Scyphozoa) in the Niantic River estuary, Connecticut. Biological Bulletin 176: 272–281.CrossRefGoogle Scholar
  10. Brewer, R. H. & J. S. Feingold, 1991. The effect of temperature on the benthic stages of Cyanea (Cnidaria: Scyphozoa), and their seasonal distribution in the Niantic River estuary, Connecticut. Journal of Experimental Marine Biology and Ecology 152: 49–60.CrossRefGoogle Scholar
  11. Cargo, D. G., 1984. Some Laboratory Techniques for the Culture of Scyphozoa. United Nations Environment Programme-Workshop on Jellyfish Blooms in the Mediterranean, Athens: 129–138.Google Scholar
  12. Cargo, D. G. & D. R. King, 1990. Forecasting the abundance of the sea nettle, Chrysaora quinquecirrha, in the Chesapeake Bay. Estuaries 13: 486–491.CrossRefGoogle Scholar
  13. Colin, S. P. & P. Kremer, 2002. Population maintenance of the scyphozoan Cyanea sp. settled planulae and the distribution of medusae in the Niantic River, Connecticut, USA. Estuaries 25: 70–75.CrossRefGoogle Scholar
  14. Condon, R. H., M. B. Decker & J. E. Purcell, 2001. Effects of low dissolved oxygen on survival and asexual reproduction of scyphozoan polyps (Chrysaora quinquecirrha). Hydrobiologia 451: 89–95.CrossRefGoogle Scholar
  15. Danielssen, D. S., E. Svendsen & M. Ostrowski, 1996. Long-term hydrographic variation in the Skagerrak based on the section Torungen-Hirtshals. ICES Journal of Marine Science 53: 917–925.CrossRefGoogle Scholar
  16. Doyle, T. K., J. D. R. Houghton, S. M. Buckley, G. C. Hays & J. Davenport, 2007. The broad-scale distribution of five jellyfish species across a temperate costal environment. Hydrobiologia 579: 29–39.CrossRefGoogle Scholar
  17. Dumont, H. J., 1994. The distribution and ecology of the fresh- and brackish-water medusae of the world. Hydrobiologia 272: 1–12.CrossRefGoogle Scholar
  18. Fonselius, S. & J. Valderrama, 2003. One hundred years of hydrographic measurements in the Baltic Sea. Journal of Sea Research 49: 229–241.CrossRefGoogle Scholar
  19. Franke, H. D. & L. Gutow, 2004. Long-term changes in the macrozoobenthos around the rocky island of Helgoland (German Bight, North Sea). Helgoland Marine Research 58: 303–310.CrossRefGoogle Scholar
  20. Gröndahl, F., 1988. A comparative ecological study on the scyphozoans Aurelia aurita, Cyanea capillata and C. lamarckii in the Gullmar Fjord, western Sweden, 1982 to 1986. Marine Biology 97: 541–550.CrossRefGoogle Scholar
  21. Gröndahl, F. & L. Hernroth, 1987. Release and growth of Cyanea capillata (L.) ephyrae in the Gullmar Fjord, western Sweden. Journal of Experimental Marine Biology and Ecology 106: 91–101.CrossRefGoogle Scholar
  22. Groth, H. & H. Thede, 1989. Does brackish water exert long-term stress on marine immigrants in the Baltic Sea? Scientia Marina 53: 677–684.Google Scholar
  23. Haahtela, I. & J. Lassig, 1967. Records of Cyanea capillata (Scyphozoa) and Hyperia galba (Amphipoda) from the Gulf of Finland and the northern Baltic. Annales Zoologici Fennici 4: 469–471.Google Scholar
  24. Halisch, W., 1933. Beobachtungen an Scyphopolypen. Zoologischer Anzeiger 104: 296–304.Google Scholar
  25. Hay, S. J., J. R. G. Hislop & A. M. Shanks, 1990. North Sea scyphomedusae: summer distribution, estimated biomass and significance particularly for 0-group gadoid fish. Netherlands Journal of Sea Research 25: 113–130.CrossRefGoogle Scholar
  26. Heeger, T., H. Möller & U. Mrowietz, 1992. Protection of human skin against jellyfish (Cyanea capillata) stings. Marine Biology 113: 669–678.CrossRefGoogle Scholar
  27. HELCOM, 2007. Climate change in the Baltic Sea area – HELCOM thematic assessment in 2007. Baltic Sea Environment Proceedings 111: 1–49.Google Scholar
  28. Holst, S., 2008. Grundlagen der Populationsentwicklung verschiedener Scyphozoa (Cnidaria) der Deutschen Bucht [online]. Hamburg, Univ., Diss., 2008, URN: urn:nbn:de:gbv:18-36356.
  29. Holst, S. & G. Jarms, 2007. Substrate choice and settlement preferences of planula larvae of five Scyphozoa (Cnidaria) from German Bight, North Sea. Marine Biology 151: 863–871.CrossRefGoogle Scholar
  30. Holst, S., I. Sötje, H. Tiemann & G. Jarms, 2007. Life cycle of the rhizostome jellyfish Rhizostoma octopus (L.) (Scyphozoa, Rhizostomeae), with studies on cnidocysts and statoliths. Marine Biology 151: 1695–1710.CrossRefGoogle Scholar
  31. IPCC, 2007. Summary for policymakers. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York.Google Scholar
  32. Jakobsen, F., 1997. Hydrographic investigations of the Northern Kattegat front. Continental Shelf Research 17: 533–535.CrossRefGoogle Scholar
  33. Janas, U. & Z. Witek, 1993. The occurrence of medusae in the southern Baltic and their importance in the ecosystem, with special emphasis on Aurelia aurita. Oceanologia 34: 69–84.Google Scholar
  34. Javidpour, J., U. Sommer & T. Shiganova, 2006. First record of Mnemiopsis leidyi A. Agassiz 1865 in the Baltic Sea. Aquatic Invasions 1: 299–302.CrossRefGoogle Scholar
  35. Khlebovich, V. V., 1969. Aspects of animal evolution related to critical salinity and internal state. Marine Biology 2: 338–345.CrossRefGoogle Scholar
  36. Kramp, P. L., 1934. An exceptional occurance of Rhizostoma octopus and Chrysaora hysoscella in the Danish waters in 1933. Journal du Conseil 9: 211–221.Google Scholar
  37. Lambert, F. J., 1935. Observations on the scyphomedusae of the Thames estuary and their metamorphosis. Travaux de la Station Zoologique de Wimereux 12: 281–307.Google Scholar
  38. Lassen, S., H. Helmholz, C. Ruhnau & A. Prange, Characterisation of neurotoxic polypeptides from Cyanea capillata medusae (Scyphozoa). Hydrobiologia. doi: 10.1007/s10750-010-0215-x.
  39. Leppäkoski, E. & S. Olenin, 2000. Non-native species and rates of spread: lessons from the brackish Baltic Sea. Biological Invasions 2: 151–163.CrossRefGoogle Scholar
  40. Leppäkoski, E., S. Gollasch, P. Gruszka, H. Ojaveer, S. Olenin & V. Panov, 2002. The Baltic – a sea of invaders. Canadian Journal of Fisheries and Aquatic Science 59: 1175–1188.CrossRefGoogle Scholar
  41. Ma, X. & J. E. Purcell, 2005. Effects of temperature, salinity, and predators on mortality of and colonization by the invasive hydrozoan Moerisia lyonsi. Marine Biology 147: 215–224.CrossRefGoogle Scholar
  42. Merck, T., 1989. Untersuchungen zur ökologischen Nische von Chrysaora hysoscella. Jahresbericht der Biologischen Anstalt Helgoland: 53–54.Google Scholar
  43. Mielck, W. & C. Künne, 1935. Fischbrut- und Plankton-Untersuchungen auf dem Reichsforschngsdampfer „Poseidon” in der Ostsee, Mai-Juni 1931. Wissenschaftliche Meeresuntersuchungen, Abteilung Helgoland N. F. 19: 1–120.Google Scholar
  44. Mills, C. E. & R. G. Vogt, 1984. Evidence that ion regulation in hydromedusae and ctenophores does not facilitate vertical migration. Biological Bulletin 166: 216–227.CrossRefGoogle Scholar
  45. Miyake, H., K. Iwao & Y. Kakinuma, 1997. Life history and environment of Aurelia aurita. South Pacific Study 17: 273–285.Google Scholar
  46. Möller, H., 1980. A summer survey of large zooplankton, particularly scyphomedusae, in North Sea and Baltic. Report of Marine Research 28: 61–68.Google Scholar
  47. Olenin, S. & E. Leppäkoski, 1999. Non-native animals in the Baltic Sea: alteration of benthic habitats in coastal inlets and lagoons. Hydrobiologia 292: 233–243.CrossRefGoogle Scholar
  48. Olesen, N. J., K. Frandsen & H. U. Riisgård, 1994. Population dynamics, growth and energetics of jellyfish Aurelia aurita in a shallow fjord. Marine Ecology Progress Series 105: 9–18.CrossRefGoogle Scholar
  49. Palmén, E., 1954. Seasonal occurrence of ephyrae and subsequent instars of Aurelia aurita (L.) in the shallow waters of Tvärminne, S. Finnland. Archivum Societatis Zoologicae-Botanicae Fennicae Vanamo 8: 122–131.Google Scholar
  50. Purcell, J. E., 2005. Climate effects on jellyfish and ctenophore blooms: a review. Journal of the Marine Biological Association of the UK 85: 461–476.CrossRefGoogle Scholar
  51. Purcell, J. E., 2007. Environmental effects on asexual reproduction rates of the scyphozoan, Aurelia labiata. Marine Ecology Progress Series 348: 183–196.CrossRefGoogle Scholar
  52. Purcell, J. E. & M. V. Sturdevant, 2001. Prey selection and dietary overlap among zooplanktivorous jellyfish and juvenile fishes in Prince William Sound, Alaska. Marine Ecology Progress Series 210: 67–83.CrossRefGoogle Scholar
  53. Purcell, J. E., J. R. White, D. A. Nemazie & D. A. Wright, 1999. Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Marine Ecology Progress Series 180: 187–196.CrossRefGoogle Scholar
  54. Purcell, J. E., T. A. Shiganova, M. B. Decker & E. D. Houde, 2001. The ctenophore Mnemiopsis in native and exotic habitats: U.S. estuaries versus Black Sea basin. Hydrobiologia 451: 145–176.CrossRefGoogle Scholar
  55. Rasmussen, E., 1973. Systematics and ecology of the Isefjord marine fauna (Denmark). Ophelia 11: 1–507.Google Scholar
  56. Rippingale, R. J. & S. J. Kelly, 1995. Reproduction and survival of Phyllorhiza punctata (Cnidaria: Rhizostomeae) in a seasonally fluctuating salinity regime in Western Australia. Marine and Freshwater Research 46: 1145–1151.CrossRefGoogle Scholar
  57. Russell, F. S., 1970. The medusae of the British Isles. II. Pelagic Scyphozoa with a supplement to the first volume on hydromedusae. Cambridge University Press, London.Google Scholar
  58. Thiel, M. E., 1960. Beobachtungen über Wachstum, Variationen und Abnormitäten bei Cyanea capillata der Ostsee. Abhandlungen und Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg N. F. 4: 89–108.Google Scholar
  59. Thiel, H., 1962. Untersuchungen über die Strobilisation von Aurelia aurita LAM. an einer Population der Kieler Förde. Kieler Meeresforschungen 18: 198–230.Google Scholar
  60. Thill, H., 1937. Beiträge zur Kenntnis der Aurelia aurita (L.). Zeitschrift für wissenschaftliche Zoologie 150: 51–96.Google Scholar
  61. Tronolone, V. B., A. C. Morandini & A. E. Migotto, 2002. On the occurrence of scyphozoan ephyrae (Cnidaria, Scyphozoa, Semaeostomeae and Rhizostomeae) in the southeastern Brazilian coast. Biota Neotropica 2
  62. Verwey, J., 1942. Die Periodizität im Auftreten und die aktiven und passiven Bewegungen der Quallen. Archives Néerlandaises de Zoologie 6: 363–468.CrossRefGoogle Scholar
  63. Wiebring, A., H. Helmholz, S. Lassen, A. Prange & G. Jarms, Separation and analysis of different types of nematocysts from Cyanea capillata (L.) medusae. Hydrobiologia. doi: 10.1007/s10750-010-0227-6.
  64. Wikström, D. A., 1932. Beobachtungen über die Ohrenqualle (Aurelia aurita L.) in den Schären SW-Finnlands. Memoranda Societatis pro Fauna et Flora Fennica 8: 14–17.Google Scholar
  65. Willcox, S., N. A. Motschaniwskyi & C. Crawford, 2007. Asexual reproduction in scyphistomae of Aurelia sp.: effects of temperature and salinity in an experimental study. Journal of Experimental Marine Biology and Ecology 353: 107–114.CrossRefGoogle Scholar
  66. Wright, D. A. & J. E. Purcell, 1997. Effect of salinity on ionic shifts in mesohaline scyphomedusae, Chrysaora quinquecirrha. Biological Bulletin 192: 332–339.CrossRefGoogle Scholar
  67. Xian, W., B. Kang & R. Liu, 2005. Jellyfish blooms in the Yangtze Estuary. Science 307: 41.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Senckenberg am Meer, German Centre for Marine Biodiversity ResearchHamburgGermany
  2. 2.Biozentrum Grindel und Zoologisches MuseumHamburgGermany

Personalised recommendations