Skip to main content

Advertisement

Log in

Movement patterns and habitat use of three declining littoral fish species in a north-temperate mesotrophic lake

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We explored patterns of habitat use and movement of three declining fish species intolerant to eutrophication in a north-temperate (Minnesota, USA) glacial lake: the blackchin shiner Notropis heterodon, blacknose shiner Notropis heterolepis, and banded killifish Fundulus diaphanus. We marked individuals with elastomer tags and estimated movement distances of recaptured individuals. Estimated home ranges for all species ranged from 3,264 to 19,525 m2, which covered 0.8 and 5.0% of our study lake’s total littoral area. Individuals of all species traveled to opposite ends of the lake over periods of time as short as 24 h. Using Geographic Information System (GIS) overlays and generalized additive models, we found fish species occurrences to be positively associated with macrophyte biovolume greater than 20% and with a high probability of occurrence of Chara. The magnitude of main and interaction effects varied among years and species. Overall, blackchin shiner occurrence was most strongly associated with biovolume. In other species by year combinations, biovolume and Chara explained varying degrees of variance in fish probability of occurrence. Our results suggest that controlling lake eutrophication and protecting of refuge areas of dense macrophytes and Chara may be needed to conserve these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ACPA (Australian Center for Precision Agriculture) 2006. Vesper User Manual: Vesper 1.6, University of Sydney, Sydney, Australia. http://www.usyd.edu.au/su/agric/acpa/pag.htm [cited 24 September 2009].

  • Becker, G. C., 1983. Fishes of Wisconsin. The University of Wisconsin Press, Madison.

    Google Scholar 

  • BioSonics Inc., 2002. EcoSAV ® submersed aquatic vegetation detection and analysis. BioSonics Inc., Seattle.

  • Blindow, I., 1992. Decline of charophytes during eutrophication: comparisons with angiosperms. Freshwater Biology 28: 9–14.

    Article  Google Scholar 

  • Brind’Amor, A., D. Boisclair, P. Legendre & D. Borcard, 2005. Multiscale spatial distribution of a littoral fish community in relation to environmental variables. Limnology and Oceanography 50: 465–479.

    Google Scholar 

  • Carpenter, S. R. & K. L. Cottingham, 1997. Resilience and restoration of lakes. Conservation Ecology 1(1): Article 2. Available at http://www.ecologyandsociety.org/vol1/iss1/art2/ [cited 24 September 2009].

  • Christensen, D. L., B. J. Herwig, D. E. Schindler & S. R. Carpenter, 1996. Impacts of lakeshore residential development on coarse woody debris in north temperate lakes. Ecological Applications 6: 1143–1149.

    Article  Google Scholar 

  • Coops, H. & R. W. Doef, 1996. Submerged vegetation development in two shallow, eutrophic lakes. Hydrobiologia 340: 115–120.

    Article  Google Scholar 

  • Copeland, J. R. & R. L. Noble, 1994. Movements by young-of-year and yearling largemouth bass and their implications for supplemental stocking. North American Journal of Fisheries Management 14: 119–124.

    Article  Google Scholar 

  • Dibble, E. D. & S. L. Harrel, 1997. Largemouth bass diets in two aquatic plant communities. Journal of Aquatic Plant Management 35: 74–78.

    Google Scholar 

  • Dodd, R., 2009. Investigating the link between land use and extirpation of intolerant fish. M.S. Thesis. University of Minnesota, St. Paul.

  • Drake, M. T. & D. L. Pereira, 2002. Development of a fish-based index of biotic integrity for small inland lakes in central Minnesota. North American Journal of Fisheries Management 22: 1105–1123.

    Article  Google Scholar 

  • Drake, M. T. & R. D. Valley, 2005. Validation and application of a fish-based index of biotic integrity for small central Minnesota lakes. North American Journal of Fisheries Management 25: 1095–1111.

    Article  Google Scholar 

  • Egertson, C. J., J. A. Kopaska & J. A. Downing, 2004. A century of change in macrophyte abundance and composition in response to agricultural eutrophication. Hydrobiologia 524: 145–156.

    Article  Google Scholar 

  • Fahrig, L., 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology and Systematics 34: 487–515.

    Article  Google Scholar 

  • Fraser, D. E., J. F. Gilliam, M. J. Daley, A. N. Le & G. T. Skalski, 2001. Explaining leptokurtic movement distributions: intrapopulation variation in boldness and exploration. American Naturalist 158: 124–134.

    Article  CAS  PubMed  Google Scholar 

  • Gamma Design Software, 2004. GS+: Geostatistics for the Environmental Sciences. Gamma Design Software, Plainwell, Michigan.

    Google Scholar 

  • Gu, W. & R. K. Swihart, 2004. Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biological Conservation 116: 195–203.

    Article  Google Scholar 

  • Haas, T. C., 1990. Kriging and automated variogram modeling within a moving window. Atmospheric Environment 24: 1759–1769.

    Google Scholar 

  • Habrat, M. D., 2007. Movement and habitat use of selected nongame fishes in a Minnesota lake. M.S thesis. Mississippi State University, Mississippi.

  • Hastie, T. J. & R. J. Tibshirani, 1990. Generalized Additive Models. Chapman Hall, London.

    Google Scholar 

  • Isaaks, E. H. & R. M. Srivastava, 1989. An Introduction to Applied Geostatistics. Oxford University Press, New York.

    Google Scholar 

  • Jacobus, J. & P. W. Webb, 2005. Using fish distribution and behavior in patchy habitats to evaluate potential effects of fragmentation on small marsh fishes: a case study. Journal of Great Lakes Research 31: 197–211.

    Article  Google Scholar 

  • Jenness, J., 2006. Grid and Theme Regression 3.1e (grid_regression.avx) extension for ArcView 3.x. Jenness Enterprises. Available at: http://www.jennessent.com/arcview/regression.htm [cited 24 September 2009].

  • Johnston, C. E., 2000. Movement patterns of imperiled blue shiners (Pisces: Cyprinidae) among habitat patches. Ecology of Freshwater Fish 9: 170–176.

    Article  Google Scholar 

  • Keast, A., J. Harker & D. Turnbull, 1978. Nearshore fish habitat utilization and species associations in Lake Opinicon (Ontario, Canada). Environmental Biology of Fishes 3: 173–184.

    Article  Google Scholar 

  • Kufel, L. & I. Kufel, 2002. Chara beds acting as nutrient sinks in shallow lakes—a review. Aquatic Botany 72: 249–260.

    Article  Google Scholar 

  • Lyons, J., 1989. Changes in the abundance of small littoral-zone fishes in Lake Mendota, Wisconsin. Canadian Journal of Zoology 67: 2910–2916.

    Article  Google Scholar 

  • Madsen, J. D., 1999. Point Intercept and Line Intercept Methods for Aquatic Plant Management. Aquatic Plant Technical Note MI-02, Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi.

    Google Scholar 

  • Manel, S., H. C. Williams & S. J. Ormerod, 2001. Evaluating presence–absence models in ecology: the need to account for prevalence. Journal of Applied Ecology 38: 921–931.

    Article  Google Scholar 

  • Minns, C. K., 1995. Allometry of home range size in lake and river fishes. Canadian Journal of Fisheries and Aquatic Sciences 52: 1499–1508.

    Article  Google Scholar 

  • Nichols, S. A. & R. C. Lathrop, 1994. Cultural impacts on macrophytes in the yahara lakes since the late 1800 s. Aquatic Botany 47: 225–247.

    Article  Google Scholar 

  • Pierce, C. L., J. B. Rasmussen & W. C. Leggett, 1991. Sampling littoral fish with a seine: corrections for variable capture efficiency. Canadian Journal of Fisheries and Aquatic Sciences 47: 1004–1010.

    Article  Google Scholar 

  • Pratt, T. C. & K. E. Smokorowski, 2003. Fish habitat management implications of the summer habitat use by littoral fishes in a north temperate, mesotrophic lake. Canadian Journal of Fisheries and Aquatic Sciences 60: 286–300.

    Article  Google Scholar 

  • Pulliam, H. R. & B. J. Danielson, 1991. Sources, sinks, and habitat selection: a landscape perspective on population dynamics. American Naturalist 137: S50–S66.

    Article  Google Scholar 

  • R Development Core Team, 2003. The R Reference Manual. Network Theory Limited, U.K. Available from http://cran.r-project.org/manuals.html [cited 24 September 2009].

  • Radomski, P., 2006. Historical changes in abundance of floating-leaf and emergent vegetation in Minnesota lakes. North American Journal of Fisheries Management 26: 932–940.

    Article  Google Scholar 

  • Ramstack, J. M., S. C. Fritz & D. R. Engstrom, 2004. Twentieth century water quality trends in Minnesota lakes compared with presettlement variability. Canadian Journal of Fisheries and Aquatic Sciences 61: 561–576.

    Article  Google Scholar 

  • Roberts, M. E., B. M. Burr & M. R. Whiles, 2006. Reproductive ecology and food habits of the blacknose shiner, Notropis heterolepis, in northern Illinois. American Midland Naturalist 155: 70–83.

    Article  Google Scholar 

  • Rossi, R. E., D. J. Mulla, A. G. Journel & E. H. Franz, 1992. Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs 62: 277–314.

    Article  Google Scholar 

  • Schindler, D. W., 2001. The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Canadian Journal of Fisheries and Aquatic Sciences 58: 18–29.

    Article  Google Scholar 

  • Schriver, P., J. Bogestrand & E. Jeppesen, 1995. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology 33: 255–270.

    Article  Google Scholar 

  • Simberloff, D. S. & L. G. Abele, 1982. Refuge design and island biogeograpic theory—effects of fragmentation. American Naturalist 120: 41–56.

    Article  Google Scholar 

  • Smith-Root Inc., 1995. Model 7.5 GPP Shore Electrofisher Manual. Vancouver, Washington.

  • Smokorowski, K. E. & T. C. Pratt, 2007. Effect of a change in physical structure and cover on fish and fish habitat in freshwater ecosystems—a review and meta-analysis. Environmental Reviews 15: 15–41.

    Article  Google Scholar 

  • Thomas, G. L., S. L. Thiesfeld, S. A. Bonar, R. N. Crittenden & G. B. Pauley, 1990. Estimation of submergent plant bed biovolume using acoustic range information. Canadian Journal of Fisheries and Aquatic Sciences 47: 805–812.

    Article  Google Scholar 

  • Trautman, M. B., 1957. The Fishes of Ohio: With Illustrated Keys. Ohio State University Press, Columbus.

    Google Scholar 

  • Valley, R. D. & M. T. Bremigan, 2002. Effects of macrophyte bed architecture on largemouth bass foraging: implications of exotic macrophyte invasions. Transactions of the American Fisheries Society 131: 234–244.

    Article  Google Scholar 

  • Valley, R. D. & M. T. Drake, 2007. What does resiliency of a clear-water state in lakes mean for the spatial heterogeneity of macrophytes? Aquatic Botany 87: 307–319.

    Article  Google Scholar 

  • Valley, R. D., M. T. Drake & C. S. Anderson, 2005. Evaluation of alternative interpolation techniques for the mapping of remotely-sensed submersed vegetation abundance. Aquatic Botany 81: 13–25.

    Article  Google Scholar 

  • van Horssen, P. W., P. P. Shot & A. Barendregt, 1999. A GIS-based plant prediction model for wetland ecosystems. Landscape Ecology 14: 253–265.

    Article  Google Scholar 

  • Walter, C., A. B. McBratney, A. Douaoui & B. Minasny, 2001. Spatial prediction of topsoil salinity in the Chelif Valley, Algeria, using local ordinary kriging with local variograms versus whole-area variogram. Australian Journal of Soil Research 39: 259–272.

    Article  Google Scholar 

  • Weaver, M. J., J. J. Magnuson & M. K. Clayton, 1997. Distribution of littoral fishes in structurally complex macrophytes. Canadian Journal of Fisheries and Aquatic Sciences 54: 2277–2289.

    Article  Google Scholar 

  • Werner, E. E., D. J. Hall, D. R. Laughlin, D. J. Wagner, L. A. Wilsmann & F. C. Funk, 1977. Habitat partitioning in a freshwater fish community. Journal of the Fisheries Research Board of Canada 34: 360–370.

    Google Scholar 

  • Werner, E. E., J. F. Gilliam, D. J. Hall & G. G. Mittelbach, 1983. An experimental test of the effects of predation risk on habitat use in fish. Ecology 64: 1540–1548.

    Article  Google Scholar 

  • Wiens, J. A., 2002. Riverine landscapes: taking landscape ecology into the water. Freshwater Biology 47: 501–515.

    Article  Google Scholar 

  • Woolnough, D. A., J. A. Downing & T. J. Newton, 2009. Fish movement and habitat use depends on water body size and shape. Ecology of Freshwater Fish 18: 83–91.

    Article  Google Scholar 

Download references

Acknowledgments

The following people assisted with data collection: J. Balk, E. Hanson, K. Hines, L. Kusilek, D. Logsdon, M. McInerny, and C. Tomcko. We thank the family of D. Tharp, who kindly allowed us to store a boat and equipment on their lakeshore property. D. Mulla and D. Staples provided guidance on statistical methodologies. C. Anderson, A. Carlson, J. Reed, S. Thomaz, and two anonymous reviewers provided useful comments on early drafts of this manuscript. This research was funded in part by the Minnesota Department of Natural Resources Fish and Game Fund and Mississippi State University Department of Wildlife and Fisheries and the Forest and Wildlife Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray D. Valley.

Additional information

Handling editor: S. M. Thomaz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valley, R.D., Habrat, M.D., Dibble, E.D. et al. Movement patterns and habitat use of three declining littoral fish species in a north-temperate mesotrophic lake. Hydrobiologia 644, 385–399 (2010). https://doi.org/10.1007/s10750-010-0207-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0207-x

Keywords

Navigation