Skip to main content

Advertisement

Log in

Can ephemeral proliferations of submerged macrophytes influence zoobenthos and water quality in coastal lagoons?

  • SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Hydrology is often the main determinant of water chemistry and structure of the aquatic communities in coastal lagoons, driven by the interaction of freshwater load from the catchment and marine intrusions. However, submerged aquatic vegetation (SAV) can have important local effects on both features, even during sporadically and short proliferations. A SAV summer proliferation was observed during 2003 in a coastal lagoon in Uruguay (Laguna de Rocha), increasing macrophyte cover and biomass in the less saline zones. SAV summer proliferations were first observed in summer 2001, with no records prior. The aim of this paper is to describe the ephemeral proliferation of SAV in this shallow brackish lagoon and to analyze its effects on the abiotic environment and on the zoobenthic community. Vegetated and unvegetated zones were sampled in the northern more limnic area (9.1 mS cm−1 ± 4.8) and the southern brackish area (20.9 mS cm−1 ± 5.2). Water and sediment chemistry were analyzed by standard methods and benthos and plants were collected with an Ekman grab. During SAV proliferation, suspended solids were five times lower inside macrophyte patches and water column total phosphorus and nitrogen were three and two times lower, respectively. Zoobenthos abundance and richness were higher in vegetated patches. However, no differences were found between sampling sites in the more brackish southern area and in the North after the SAV proliferation ended. This indicates that SAV can influence water chemistry and benthos structure above a biomass threshold of 100 g DW m−2. Although hydrology is the driving force regulating communities and water chemistry in these coastal lagoons, our results showed that SAV can also be an important local factor above a certain biomass threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aldabe, J., P. Rocca & S. Claramunt, accepted. URUGUAY. In BirdLife International (in prep). Important Bird Areas Americas. BirdLife International (BirdLife conservation series no. 16). Quito, Ecuador.

  • APHA (American Public Health Association), 1985. Standard Methods for the Examination of Water and Wastewater, 16th ed. APHA/AWWA/WPCF, Washington.

    Google Scholar 

  • Arocena, R., 2007. Effects of submerged aquatic vegetation on macrozoobenthos in a coastal lagoon of the Southwestern Atlantic. International Review of Hydrobiology 92(1): 33–47.

    Article  Google Scholar 

  • Attrill, M. J., 2002. A testable linear model for diversity trends in estuaries. Journal of Animal Ecology 71: 262–269.

    Article  Google Scholar 

  • Aubriot, L., D. Conde, S. Bonilla, V. Hein & A. Britos, 2005. Vulnerabilidad de una laguna costera en una Reserva de Biosfera: indicios recientes de eutrofización. In Vila, I. & J. Pizarro (eds), Eutrofización de Lagos y Embalses. CYTED XVIIB, Chile: 65–85.

    Google Scholar 

  • Barko, J. W., M. S. Adams & N. L. Clesceri, 1986. Environmental factors and their consideration in the management of submersed aquatic vegetation: a review. Journal of Aquatic Plant Manage 24: 1–10.

    Google Scholar 

  • Bates, B. C., Z. W. Kundzewicz, S. Wu & J. P. Palutikof (eds), 2008. Climate Change and Water. IPCC Secretariat, Geneva.

    Google Scholar 

  • Bergey, E. A., S. F. Balling, J. N. Collins, G. A. Lamberti & V. H. Resh, 1992. Bionomics of invertebrates within an extensive Potamogeton pectinatus bed of a California marsh. Hydrobiologia 234: 15–24.

    Google Scholar 

  • Bidegain, M., F. R. M. Caffera, F. Blixen, V. Pshennikov, J. J. Lagomarsino, E. A. Forbes & G. J. Nagy, 2005. Tendencias Climáticas, Hidrológicas y Oceanográficas en el Río de la Plata y Costa Uruguaya. In Barrios, V., A. Barrios, G. Menéndez & Nagy (eds), El Cambio Climático en el Río de la Plata. CIMA, CONYCET, UBA, Buenos Aires: 137–143.

    Google Scholar 

  • Biometrics, 1997–2003. CANOCO for Windows Version 4.52. Plant Research International, Wageningen.

  • Bonilla, S., D. Conde, L. Aubriot & M. C. Pérez, 2005. Influence of hydrology and nutrients on phytoplankton species composition and life strategies in a subtropical coastal lagoon. Estuaries 28(6): 884–895.

    Article  Google Scholar 

  • Bonilla, S., D. Conde, L. Aubriot, L. Rodríguez-Gallego, C. Piccini, E. Meerhoff, L. Rodríguez-Graña, D. Calliari, P. Gómez, I. Machado & A. Britos, 2006. Procesos Estructuradores de las Comunidades Biológicas en Lagunas Costeras de Uruguay. In Menafra, R., L. Rodríguez-Gallego, F. Scarabino & D. Conde (eds), Bases para la Conservación y el Manejo de la Costa Uruguaya. Vida Silvestre Uruguay. Montevideo, Uruguay: 611–630.

    Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Article  Google Scholar 

  • Bortolus, A., O. O. Iribarne & M. M. Martínez, 1998. Relationship between waterfowl and the seagrass Ruppia maritima in a Southwestern Atlantic Coastal Lagoon. Estuaries 21(4B): 710–717.

    Article  Google Scholar 

  • Chagas, G. G. & M. S. Suzuki, 2005. Seasonal hydrochemical variation in a tropical coastal lagoon (Açu Lagoon, Brazil). Brazilian Journal of Biology 65(4): 597–607.

    Article  CAS  Google Scholar 

  • Conde, D. & L . Rodríguez-Gallego, 2002. Problemática ambiental y gestión de las lagunas costeras atlánticas de Uruguay. In Domínguez, A. & R. Prieto (eds), Perfil Ambiental 2002. NORDAN. Montevideo, Uruguay: 149–166.

  • Conde, D., S. Bonilla, L. Aubriot, R. De León & W. Pintos, 1999. Comparison of the areal amount of chlorophyll a of planktonic and attached microalgae in a shallow coastal lagoon. Hydrobiologia 408–409: 285–291.

    Article  Google Scholar 

  • Conde, D., L. Aubriot & R. Sommaruga, 2000. Changes in UV penetration associated with marine intrusions and freshwater discharge in a shallow coastal lagoon of the Southern Atlantic Ocean. Marine Ecology Progress Series 207: 19–31.

    Article  Google Scholar 

  • Conde, D., L. Aubriot, S. Bonilla & R. Sommaruga, 2002. Marine intrusions in a coastal lagoon enhances the effects of UV radiation on the phytoplankton photosynthetic rate. Marine Ecology Progress Series 240: 57–70.

    Article  CAS  Google Scholar 

  • Connolly, R. M., 1997. Differences in composition of small, motile invertebrate assemblages from seagrass and unvegetated habitats in a southern Australian estuary. Hydrobiologia 346: 137–148.

    Article  Google Scholar 

  • Cronk, J. K. & M. S. Fennessy, 2001. Wetland Plants, Biology and Ecology, 1st ed. Lewis Publishers, Florida.

    Google Scholar 

  • Diehl, S. & R. Kornijów, 1998. Influence of submerged macrophytes on trophic interactions among fish and macroinvertebrates. In Jeppesen, E., M. Sondergaard, M. Sondergaard & K. Christoffersen (eds), Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag, New York: 24–46.

    Google Scholar 

  • Fabiano, G., O. Santana & J. C. Elgue, 1998. Fish communities in the coastal lagoons of Uruguay. Verhandlungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie 26: 1439–1441.

    Google Scholar 

  • Frodge, J. D., G. L. Thomas & G. B. Pauley, 1990. Effects of canopy formation by floating and submergent aquatic macrophytes on the water quality of two shallow Pacific Northwest lakes. Aquatic Botany 38: 231–248.

    Article  Google Scholar 

  • Genta, J. L., G. Pérez & C. R. Mechoso, 1998. A recent increasing trend in the streamflow of rivers in southeastern South America. Journal of Climate 11: 2858–2862.

    Article  Google Scholar 

  • Giménez, L., A. I. Borthagaray, M. Rodríguez, A. Brazeiro & C. Dimitriadis, 2005. Scale-dependent patterns of macrofaunal distribution in soft-sediment intertidal habitats along a largescale estuarine gradient. Helgoland Marine Research 59: 224–236.

    Article  Google Scholar 

  • Green, E. P. & F. T. Short, 2003. World Atlas of Seagrasses. UNEP, WCMC, California.

    Google Scholar 

  • Hammer, O., D. A. T. Harper & P. D. Ryan, 2001. PAST: palaeontological statistics software package for education and data analysis. Palaentologia Electronica 4(1): 9.

    Google Scholar 

  • Haunstein, E. & C. Ramirez, 1986. The influence of salinity on the distribution of Egeria densa in the Valdivia river basin, Chile. Archiv für Hydrobiologie 107: 511–519.

    Google Scholar 

  • James, W. F. & J. W. Barko, 1990. Macrophyte influences on the zonation of sediment accretion and composition in a northtemperate reservoir. Archiv für Hydrobiologie 120: 129–142.

    Google Scholar 

  • James, W. F., J. W. Barko & M. G. Butler, 2004. Shear stress and sediment resuspension in relation to submersed macrophyte biomass. Hydrobiologia 515: 181–191.

    Article  Google Scholar 

  • Jeppesen, E., T. L. Lauridsen, T. Kairesalo & M. R. Perrow, 1998. Impact of submerged macrophytes on fish–zooplankton interactions in lakes. In Jeppesen, E., M. Sondergaard, M. Sondergaard & K. Christoffersen (eds), Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag, New York: 91–114.

    Google Scholar 

  • Kantrud, H. A., 1990. Sago pondweed (Potamogeton pectinatus L.): a literature review. In U.S. Fish and Wildlife Service, Fish and Wildlife Research 10. Northern Prairie Wildlife Research Center, Jamestown, ND. http://www.stormingmedia.us/13/1362/A136223.html. Accessed 20 January 2009.

  • Kantrud, H. A., 1991. Wigeongrass (Ruppia maritima L.): a literature review. In U.S. Fish and Wildlife Service, Fish and Wildlife Research 10. Northern Prairie Wildlife Research Center, Jamestown, ND. http://www.stormingmedia.us/67/6762/A676223.html. Accessed 20 January 2009.

  • Kautsky, L., 1988. Life strategies of aquatic soft bottom macrophytes. Oikos 53: 126–135.

    Article  Google Scholar 

  • Kjerfve, B., 1994. Coastal Lagoons Processes. Elsevier Oceanography Series 60. Elsevier Science Publishers, Amsterdam.

  • Koroleff, F., 1970. Direct determination of ammonia in natural water as indophenol-blue. International Conference in the Exploration of the Sea. C.M 1969/C9. ICES. Information on techniques and methods for sea water analysis. Interlaboratory Reports 3: 19–22.

    Google Scholar 

  • Learner, M. A., P. R. Wiles & J. G. Pickering, 1989. The influence of aquatic macrophyte identity on the composition of the chironomid fauna in a former gravel pit in Berkshire, England. Aquatic Insects 11(3): 183–191.

    Article  Google Scholar 

  • Lepš, J. & P. Šmilauer, 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, United Kingdom.

    Google Scholar 

  • Levin, L. A. & T. S. Talley, 1999. Influences of vegetation and abiotic environmental factors on salt marsh invertebrates. In Weinstein, M. P. & D. A. Kreeger (eds), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Amsterdam: 661–709.

    Google Scholar 

  • Mackereth, F. J. H., J. Heron & J. F. Talling, 1978. Water Analysis: Some Revised Methods for Limnologists. The Freshwater Biological Association, Ambleside, UK.

    Google Scholar 

  • Mazzeo, N., L. Rodríguez-Gallego, C. Kruk, M. Meerhoff, J. Gorga, G. Lacerot, F. Quintans, M. Loureiro, D. Larrea & F. García-Rodríguez, 2003. Effects of Egeria densa Planch. beds on a shallow lake without piscivorous fish. Hydrobiologia 506–509: 591–602.

    Article  Google Scholar 

  • Meerhoff, M., N. Mazzeo, B. Moss & L. Rodríguez-Gallego, 2003. The structuring role of free-floating versus submerged plants in a subtropical shallow lake. Aquatic Ecology 37: 377–391.

    Article  Google Scholar 

  • Meerhoff, M., J. M. Clemente, F. Texeira de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007a. Can warm climate-related structure of littoral predator assemblies weaken clear water state in shallow lakes? Global Change Biology 13: 1888–1897.

    Article  Google Scholar 

  • Meerhoff, M., C. Iglesias, F. Texeira de Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007b. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021.

    Article  Google Scholar 

  • Moore, K. A., 2004. Influence of seagrasses on water quality in shallow regions of the lower Chesapeake Bay. Journal of Coastal Research 45: 162–178.

    Google Scholar 

  • Morrison, R. I. G., R. K. Ross, R. Vaz-Ferreira & M. Huertas, 1989. Uruguay. In Morrison, R. I. G. & R. K. Ross (eds), Atlas of Neartic Shorebirds on the Coast of South America. Canadian Wildlife Service Special Publication, Otawa: 213–217.

  • Moss, B., 1998. Ecology of Freshwaters. Man and Medium. Past to Future. Blackwell, Oxford.

    Google Scholar 

  • Müllin, J. B. & J. P. Riley, 1955. The spectrophotometric determination of silicate-silicon in natural waters with special reference to sea water. Analytica Chimica Acta 12: 162–170.

    Article  Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Murphy, L. R., S. T. Kinsey & M. J. Durako, 2003. Physiological effects of short-term salinity changes on Ruppia maritima. Aquatic Botany 75: 293–309.

    Article  Google Scholar 

  • Nixon, S. W., 1995. Coastal eutrophication: a definition, social causes, and future concerns. Ophelia 41: 199–220.

    Google Scholar 

  • Norbis, W. & O. Galli, 2004. Feeding habits of the flounder Paralichthys orbignyanus (Valenciennes, 1842) in a shallow coastal lagoon of the southern Atlantic Ocean: Rocha, Uruguay. Ciencias Marinas 30(4): 619–626.

    Google Scholar 

  • Orchard, A. E., 1981. A revision of South American Myriophyllum (Haloragaceae), and its repercussions on some Australian and North American species. Brunonia 4: 27–65.

    Article  Google Scholar 

  • Peeters, E. T. H. M., R. Gylstra & J. H. Vos, 2004. Benthic macroinvertebrate community structure in relation to food and environmental variables. Hydrobiologia 519: 103–115.

    Article  Google Scholar 

  • Pérez-Castañeda, R. & O. Defeo, 2004. Spatial distribution and structure along ecological gradients: panaeid shrimps in a tropical estuarine habitat of Mexico. Marine Ecology Progress Series 273: 173–185.

    Article  Google Scholar 

  • Piccini, C., D. Conde, C. Alonso, R. Sommaruga & J. Pernthaler, 2006. Blooms of Single Bacterial Species in a Coastal Lagoon of the Southwestern Atlantic Ocean. Applied and Environmental Microbiology 72(10): 6560–6568.

    Article  CAS  PubMed  Google Scholar 

  • Panario, D. & G. Piñeiro, 1997. Vulnerability of oceanic dune systems under wind pattern change scenarios in Uruguay. Climatic Research Special Issues 9(1–2): 67–68.

    Article  Google Scholar 

  • Pintos, W., D. Conde, R. de León, M. J. Cardezo, A. Jorcín & R. Sommaruga, 1991. Some limnological characteristics of Laguna de Rocha (Uruguay). Revista Brasileira de Biologia 51(1): 79–84.

    Google Scholar 

  • Rabalais, N. N., 2002. Nitrogen in aquatic ecosystems. Ambio 31(2): 101–112.

    Google Scholar 

  • Remane, A. & C. Schlieper, 1971. Biology of Brackish Water. Wiley, New York.

    Google Scholar 

  • Ritter, N. P. & G. E. Crow, 1998. Myriophyllum quitense Kunth (Haloragaceae) in Bolivia: a terrestrial growth-form with bisexual flowers. Aquatic Botany 60: 389–395.

    Article  Google Scholar 

  • Rodríguez-Gallego L., D. Conde, M. Achkar, V. Sabaj, E. Rodó & R. Arocena, 2009. Impacto del uso del suelo en la cuenca de la Laguna de Rocha. In Proceedings del IV Congreso Nacional de Áreas Protegidas y V Encuentro Nacional de Ecoturismo y Turismo Rural, Flores, Uruguay.

  • Rodríguez-Graña, L., D. Calliari, D. Conde, J. Sellanes & R. Urrutia, 2008. Food web of a SW Atlantic shallow coastal lagoon: spatial environmental variability does not impose substantial changes in the trophic structure. Marine Ecology Progress Series 362: 69–83.

    Article  CAS  Google Scholar 

  • Sarroca, M., 2008. Relevancia de la Laguna de Rocha (Uruguay) como hábitat para Cygnus melancoryphus y Coscoroba coscoroba: análisis espacio-temporal de la abundancia y estudio de comportamiento. Tesis de Maestría, PEDECIBA-Biología, UDELAR, Montevideo, Uruguay.

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman & May, London.

    Google Scholar 

  • Schütz Rodrigues, R. & B. E. Irgang, 2001. Potamogetonaceae Durmort. No Rio Grande do Sul, Brasil. Iheringia 56: 3–49.

    Google Scholar 

  • Sculthorpe, C. D., 1967. The Biology of Aquatic Vascular Plants. Edward Arnold Publishers, London.

    Google Scholar 

  • Seeliger, U., 1998. Fanerógamas marinhas submersas. In Seeliger, U., C. Odebrecht & J. P. Castello (eds), Os ecosistemas costeiro e marinho do extremo dul do Brasil. Editora Ecosientia. Rio Grande, Brasil: 29–32.

    Google Scholar 

  • Sommaruga, R. & D. Conde, 1990. Distribución de materia orgánica en los sedimentos recientes de la Laguna de Rocha (Rocha Uruguay). Atlântica 12: 35–44.

    Google Scholar 

  • Søndergaard, M. & B. Moss, 1998. Impact of submerged macrophyteson phytoplankton in shallow freshwater lakes. In Jeppesen, E., M. Sondergaard, M. Sondergaard & K. Christoffersen (eds), Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag, New York: 115–132.

    Google Scholar 

  • Stevenson, J. C., 1988. Comparative ecology of submersed grass beds in freshwater, estuarine, and marine environments. Limnology and Oceanography 33(4 part 2): 867–893.

    Article  CAS  Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of sea water analysis. Fisheries Research Board Bulletin of Canada 167: 207–211.

    Google Scholar 

  • Suzuki, M. S., A. R. C. Ovalle & E. A. Pereira, 1998. Effects of sand bar openings on some limnological variables in a hypertrophic tropical coastal lagoon. Hydrobiologia 368: 111–122.

    Article  CAS  Google Scholar 

  • ter Braak, C. J. F. & P. Smilauer, 1998. CANOCO Reference Manual and User’s Guide to CANOCO for Windows. Centre for Biometry, Wageningen.

    Google Scholar 

  • Thomaz, S. M., E. D. Dibble, L. R. Evangelista, J. Higuti & L. M. Bini, 2008. Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology 53: 358–367.

    Google Scholar 

  • Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnology and Oceanography 29: 472–486.

    Article  Google Scholar 

  • Valderrama, J. C., 1981. The simultaneous analysis of total N and P in natural waters. Marine Chemistry 10: 1009–1022.

    Article  Google Scholar 

  • Vaz-Ferreira, R. & F. Rilla, 1991. Black-necked swan (Cygnus melancoryphus) and coscoroba swan (Coscoroba coscoroba) in a wetland in Uruguay. Wildfowl Supplement 1: 272–277.

    Google Scholar 

  • Vizziano, D., F. Forni, G. Saona & W. Norbis, 2002. Reproduction of Micropogonias furnieri in a shallow temperate coastal lagoon in the southern Atlantic. Journal of Fish Biology 61: 196–206.

    Article  Google Scholar 

  • Weisner, S. E. B., P. G. Eriksson, W. Granéli & L. Leonardson, 1994. Influence of macrophytes on nitrate removal in wetlands. Ambio 23: 263–366.

    Google Scholar 

  • Zar, J. H., 1999. Biostatistical Analysis. Prentice Hall, New Yersey.

    Google Scholar 

Download references

Acknowledgments

Our thanks to Ramsar Small Grants which supported this research. To Silvana Masciadri who helped during sampling and plant manipulation. To Laura Rodríguez-Graña, Danilo Calliari, Valeria Hein, Gisselle Lacerot, and Claudia Piccini who were part of the research team and conducted bacteria, phytoplankton, zooplankton, and ichthyoplankton studies not reported in this study. To Carla Kruk for her support in statistical analysis and to Tito, our special driver and chef during the field trips. We want to give special thanks to all three anonymous reviewers for their comments as they contributed to significantly improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorena Rodríguez-Gallego.

Additional information

Guest editors: M. Meerhoff, M. Beklioglu, R. Burks, F. García-Rodríguez, N. Mazzeo & B. Moss/Structure and Function of World Shallow Lakes: Proceedings from the 6th Shallow Lakes Congress, held in Punta del Este, Uruguay, 23–28 November, 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Gallego, L., Meerhoff, E., Clemente, J.M. et al. Can ephemeral proliferations of submerged macrophytes influence zoobenthos and water quality in coastal lagoons?. Hydrobiologia 646, 253–269 (2010). https://doi.org/10.1007/s10750-010-0185-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0185-z

Keywords

Navigation