, Volume 646, Issue 1, pp 61–72 | Cite as

Drought-induced changes in nutrient concentrations and retention in two shallow Mediterranean lakes subjected to different degrees of management

  • Arda Özen
  • Burcu Karapınar
  • İsmail Kucuk
  • Erik JeppesenEmail author
  • Meryem BekliogluEmail author


While extensive knowledge exists on the relationship between nutrient loading and nutrient concentrations in lakes in the cold temperate region, few studies have been conducted in warm lakes, not least in warm arid lakes. This is unfortunate as a larger proportion of the world’s lakes will be situated in arid climates in the future due to climate change and a larger proportion will suffer from a higher frequency of intensive drought. We conducted a comprehensive 11–13 year mass balance study in two interconnected shallow Mediterranean lakes in Turkey, covering a period with substantial changes in climate conditions. The upstream lake was only affected by natural changes in nutrient loading, while the downstream lake was additionally influenced by sewage diversion and restoration by fish removal. Contrasting to experience from north temperate lakes we found an increase in in-lake concentrations of total phosphorus and inorganic nitrogen (ammonia as well as nitrate) in dry years despite lower external nutrient loading, and submerged macrophytes did not increase the nitrogen retention capacity of the lakes. In contrast, fish removal modulated the nitrogen concentration as in north temperate lakes, but the effect was not long-lasting. Our results suggest that climate warming reduces the nutrient retention capacity of shallow lakes in the Mediterranean and exacerbates eutrophication. Lower thresholds of nutrient loading for shifting turbid shallow lakes to a clear water state are therefore to be expected in arid zones in a future warmer climate, with important management implications.


Arid regions Nitrogen dynamics Biomanipulation Climate change Eutrophication Water level fluctuation 



This study and AÖ were supported by a Middle East Technical University, BAP research grant, and the METU-DPT ÖYP programme of Turkey (BAP-08-11-DPT-2002-K120510), the EU projects EUROLIMPACS ( and WISER (, by CLEAR (A Villum Kann Rasmussen Centre of Excellence project), The Research Council for Nature and Universe, Denmark (272-08-0406) and TUBITAK, BIDEB. We thank Anne Mette Poulsen for editorial assistance and Juana Jacobsen for technical assistance.


  1. Alcamo, J., J. M. Moreno, B. Novaky, M. Bindi, R. Corobov, R. Devoy, C. Giannakopoulos, E. Martin, J. E. Olesen, A. Shvidenko, M. Araujo, A. Dlugolecki, E. Jeppesen, J van Minnen, J de Ronse & J. Sweeny, 2007. IPCC WGII Fourth Assessment Report. Chap. 12: Europe.Google Scholar
  2. Altınbilek, D., N. Usul, H. Yazıcıoğlu, Y. Kutoğlu, N. Merzi, M. Göğüş, V. Doyuran & A. Günyaktı, 1995. Gölbaşı Mogan-Eymir Gölleri için su kanakları ve çevre yönetim planı projesi. Technical Report No: 93-03-03-04-01. Ankara: Middle East Technical University (in Turkish).Google Scholar
  3. Alvarez-Cobelas, M., C. Rojo & D. Angeler, 2005. Mediterranean limnology: current status, gaps and future. Journal of Limnology 64: 13–29.Google Scholar
  4. Bachmann, R. W., 1984. Calculation of phosphorus and nitrogen loadings to natural and artificial lakes. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 22: 239–243.Google Scholar
  5. Beklioglu, M. & A. Özen, 2008. Ülkemiz sığ gollerinde kuraklık etkisi ve ekolojik tepkiler. In S. Kalaycı & M. E. Aydın (eds), the conference book of International Conference on Global Climate Change and Its environmental Impacts. Damla Press, Konya: 299–306 (in Turkish).Google Scholar
  6. Beklioglu, M. & C. O. Tan, 2008. Restoration of a shallow Mediterranean lake by biomanipulation complicated by drought. Fundamental and Applied Limnology 171: 105–118.CrossRefGoogle Scholar
  7. Beklioglu, M., L. Carvalho & B. Moss, 1999. Rapid recovery of a shallow hypertrophic lake following sewage effluent diversion: lack of chemical resilience. Hydrobiologia 412: 5–15.CrossRefGoogle Scholar
  8. Beklioglu, M., O. Ince & I. Tuzun, 2003. Restoration of the eutrophic Lake Eymir, Turkey, by biomanipulation after a major external nutrient control I. Hydrobiologia 489: 93–105.CrossRefGoogle Scholar
  9. Beklioglu, M., G. Altinayar & C. O. Tan, 2006. Water level control over submerged macrophyte development in five shallow lakes of Mediterranean Turkey. Archiv für Hydrobiologie 166: 535–556.CrossRefGoogle Scholar
  10. Beklioglu, M., S. Romo, I. Kagalou, X. Quintana & E. Bécares, 2007. State of the art in the functioning of shallow Mediterranean Lakes: workshop conclusions. Hydrobiologia 584: 317–326.CrossRefGoogle Scholar
  11. Coops, H., M. Beklioglu & T. L. Crisman, 2003. The role of water-level fluctuations in shallow lake ecosystems–workshop conclusions. Hydrobiologia 506(509): 23–27.CrossRefGoogle Scholar
  12. DSI, 1993. Mogan gölü Limnolojik Etüt Raporu. Ankara: Technical Report. General Directorate of State Hydraulic Works (in Turkish).Google Scholar
  13. EIE, 2007. Mogan ve Eymir Gölleri havzasının hidrometeorolojik özellikleri Technical Report. Turkish General Directorate of Electrical Power, Resources Survey and Development Administration, Ankara (in Turkish).Google Scholar
  14. Eighmy, T. T. P. & L. Bishop, 1989. Distribution and role of bacterial nitrifying populations in nitrogen removal in aquatic treatment systems. Water Research 25: 947–955.Google Scholar
  15. Eriksson, P. G. & S. E. B. Weisner, 1997. Nitrogen removal in a waste water reservoir: the importance of denitrification by epiphytic biofilms on submerged vegetation. Journal of Environmental Quality 26: 905–910.CrossRefGoogle Scholar
  16. Gafny, S. & A. Gasith, 1999. Spatially and temporally sporadic appearance of macrophytes in the littoral zone of Lake Kinneret, Israel: taking advantage of a window of opportunity. Aquatic Botany 62: 249–267.CrossRefGoogle Scholar
  17. Gökmen M., 2004. Modelling of Nitrogen Removal Efficiency of the Wetlands Surrounding Lake Mogan, MSc thesis, Middle East Technical University, Turkey.Google Scholar
  18. Gophen, M., S. Serruya & S. Threlkeld, 1990. Long-term patterns in nutrients, phytoplankton and zooplankton of Lake Kinneret and future predictions for ecosystem structure. Archiv für Hydrobiologie 118: 449–460.Google Scholar
  19. Hansson, L. A., 1990. Quantifying the impact of periphytic algae on nutrient availability for phytoplankton. Freshwater Biology 24: 265–273.CrossRefGoogle Scholar
  20. Hansson, L. A., H. Annadotter, E. Bergman, S. F. Hamrin, E. Jeppesen, T. Kairesalo, E. Luokkanen, P. Å. Nilsson, M. Søndergaard & J. Strand, 1998. Biomanipulation as an application of food-chain theory: constraints, synthesis, and recommendations for temperate lakes. Ecosystems 1: 558–574.CrossRefGoogle Scholar
  21. Havens, K. E., B. Sharfstein, M. A. Brady, T. L. East, M. C. Harwell, R. P. Maki & A. J. Rodusky, 2004. Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA. Aquatic Botany 78: 67–82.CrossRefGoogle Scholar
  22. Jensen, H. S. & F. Ø. Andersen, 1992. Importance of temperature, nitrate and pH for phosphorus from aerobic sediments of four shallow, eutrophic lakes. Limnology and Oceanography 37: 577–589.CrossRefGoogle Scholar
  23. Jensen, J. P., A. R. Pedersen, E. Jeppesen & M. Søndergaard, 2006. An empirical model describing the seasonal dynamics of phosphorus in 16 shallow eutrophic lakes after external loading reduction. Limnology and Oceanography 51: 791–800.Google Scholar
  24. Jeppesen, E., J. Windolf, J. P. Jensen, T. L. Lauridsen, M. Søndergaard, K. Sandby & P. H. Møller, 1998. Changes in nitrogen retention in four shallow eutrophic lakes following a decline in density of cyprinids. Archiv für Hydrobiologie 142: 129–152.Google Scholar
  25. Jeppesen, E., M. Søndergaard, J. P. Jensen, K. E. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, S. Hilt, K. Kangur, J. Köhler, E. H. H. R. Lammens, T. L. Lauridsen, M. Manca, M. R. Miracle, B. Moss, P. Nõges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D. Straile, T. Tatrai, E. Willén & M. Winder, 2005. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.CrossRefGoogle Scholar
  26. Jeppesen, E., B. Kronvang, M. Meerhoff, M. Søndergaard, K. M. Hansen, H. E. Andersen, T. L. Lauridsen, M. Beklioglu, A. Özen & J. E. Olesen, 2009. Climate change effects on runoff, phosphorus loading and lake ecological state, and potential adaptations. Journal of Environmental Quality 38: 1930–1941.CrossRefPubMedGoogle Scholar
  27. Jossette, G., B. Leporcq, N. Sanchez & X. Philippon, 1999. Biogeochemical mass-balances (C, N, P, Si) in three large reservoirs of the Seine Basin (France). Biogeochemistry 47: 119–146.Google Scholar
  28. Kosten, S., V. L. M. Huszar, N. Mazzeo, M. Scheffer, L. S. L. Sternberg & E. Jeppesen, 2009. Lake and watershed characteristics rather than climate influence nutrient limitation in shallow lakes. Ecological Applications 19: 1791–1804.CrossRefPubMedGoogle Scholar
  29. Lewis, W. M., 1987. Tropical limnology. Annual Review of Ecology, Evolution, and Systematics 18: 159–184.CrossRefGoogle Scholar
  30. Lijklema, L., J. H. Jansen & R. M. M. Roıjackers, 1989. Eutrophication in the Netherlands. Water Science and Technology 2112: 1899–1902.Google Scholar
  31. Manav, E. & S. V. Yerli, 2008. An assessment on the trophic status of Lake Mogan, Turkey. Fresenius Environmental Bulletin 17: 3–8.Google Scholar
  32. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200(201): 367–377.CrossRefGoogle Scholar
  33. ÖÇKK, 2002. Mogan Gölü Havzası Biyolojik Zenginlikleri ve Ekolojik Yönetim Planı. Ankara: Çevre Bakanlığı Özel Çevre Koruma Kurumu Başkanlığı (in Turkish).Google Scholar
  34. OECD, 1982. Eutrophication of waters. Monitoring, assessment and control. OECD, Paris.Google Scholar
  35. Özen, A., 2006. Role of Hydrology, Nutrients and Fish Predation in Determining the Ecology of a System of Shallow Lakes. MSc thesis, Middle East Technical University, Turkey.Google Scholar
  36. Özkan, K., E. Jeppesen, L.S. Johansson & M. Beklioglu, 2010. The response of periphyton and submerged macrophytes to nitrogen and phosphorus loading in shallow warm lakes: a mesocosm experiment. Freshwater Biology 55: 463–475.CrossRefGoogle Scholar
  37. Reddy, K. R. & W. F. De Busk, 1985. Nutrient removal potential of selected aquatic macrophytes. Journal of Environmental Quality 148: 459–462.CrossRefGoogle Scholar
  38. Romero, J. R., I. Kagalou, J. Imberger, D. Hela, M. Kotti, A. Bartzokas, T. Albanis, N. Evmirides, S. Karkabounas, J. Papagiannis & A. Bithava, 2002. Seasonal water quality of shallow and eutrophic Lake Pamvotis, Greece: implications for restoration. Hydrobiologia 474: 91–105.CrossRefGoogle Scholar
  39. Romo, S., M. J. Villena, M. Sahuquillo, J. M. Soria, M. Gimenez, T. Alfonso, E. Vicente & M. R. Miracle, 2005. Response of a shallow Mediterranean lake to nutrient diversion: does it follow similar patterns as in northern shallow lakes? Freshwater Biology 50: 1706–1717.CrossRefGoogle Scholar
  40. Saunders, D. L. & J. Kalff, 2001. Nitrogen retention in wetlands, lakes and rivers. Hydrobiologia 443: 205–212.CrossRefGoogle Scholar
  41. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.CrossRefGoogle Scholar
  42. Søndergaard, M., J. P. Jensen & E. Jeppesen, 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506(509): 135–145.CrossRefGoogle Scholar
  43. Søndergaard, M., E. Jeppesen, T. L. Lauridsen, C. Skov, E. van Nes, R. Rojijackers, E. Lammens & R. Portielje, 2007. Lake restoration: successes, failures and long-term effects. Journal of Applied Ecology 44: 1095–1105.CrossRefGoogle Scholar
  44. Søndergaard, M., L. Liboriussen, A. R. Pedersen & E. Jeppesen, 2008. Lake restoration by fish removal: short and long-term effects in 36 Danish lakes. Ecosystems 11: 1291–1305.CrossRefGoogle Scholar
  45. Svensson, J. M., E. Bergman & G. Andersson, 1999. Impact of cyprinid reduction on the benthic macroinvertebrate community and implications for increased nitrogen retention. Hydrobiologia 404: 99–112.CrossRefGoogle Scholar
  46. Tan, C. O. & M. Beklioglu, 2005. Catastrophic-like shifts in two Turkish lakes: a modeling approach. Ecological Modelling 183: 425–434.CrossRefGoogle Scholar
  47. Tan, C. O. & M. Beklioglu, 2006. Modelling complex nonlinear responses of shallow lakes to fish and hydrology using artificial neural networks. Ecological Modelling 196: 183–194.CrossRefGoogle Scholar
  48. Tuncer, B., B. Bayar, C. Yesilyurt & G. Tuncel, 2001. Ionic composition of precipitation at the central Anotalia (Turkey). Atmospheric Environment 35: 5989–6002.CrossRefGoogle Scholar
  49. Turkish State Meteorological Service.
  50. Vollenweider, R. A., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie dell’Istituto Italiano Idrobiologia 33: 53–83.Google Scholar
  51. Windolf, J., E. Jeppesen, J. P. Jensen & P. Kristensen, 1996. Modelling of seasonal variation in nitrogen retention and in-lake concentration: A four-year mass balance study in 16 shallow Danish lakes. Biogeochemistry 33: 25–44.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Limnology Laboratory, Biology DepartmentMiddle East Technical UniversityAnkaraTurkey
  2. 2.General Directorate of Electrical Power, Resource Survey and Development AdministrationAnkaraTurkey
  3. 3.Department of Freshwater Ecology, National Environmental Research InstituteAarhus UniversitySilkeborgDenmark

Personalised recommendations