Skip to main content
Log in

Effect of prey type and inorganic turbidity on littoral predator–prey interactions in a shallow lake: an experimental approach

  • SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Predation often represents the prevailing process shaping aquatic ecosystems. As foraging and antipredatory behaviour frequently relate to vision, turbidity may often impair the interactions between the predator and its prey, depending on prey type and source and level of turbidity. We studied the effect of inorganic turbidity (0–30 NTU) on the effectiveness of fish feeding on two types of prey in different habitats: free-swimming cladoceran (Daphnia pulex) in open water and plant-associated cladoceran (Sida crystallina) attached to Nuphar lutea leaves. For the planktivore, we used vision-oriented perch (Perca fluviatilis) common in the littoral zone of temperate lakes. In our study, increasing inorganic turbidity did not appear to initiate any significant change in the feeding efficiency of perch on free-swimming Daphnia pulex. However, we saw a markedly different feeding efficiency when perch targeted plant-attached Sida crystallina. Our results substantiate that floating-leaved macrophytes in turbid lakes may provide a favourable habitat for plant-attached cladocerans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahams, M. & M. Kattenfeld, 1997. The role of turbidity as a constraint on predator–prey interactions in aquatic environments. Behavioural Ecology and Sociobiology 40: 169–174.

    Article  Google Scholar 

  • Aksnes, D. & J. Giske, 1993. A theoretical model of aquatic visual feeding. Ecological Modelling 67: 233–250.

    Article  Google Scholar 

  • Breitburg, D. L., 1988. Effects of turbidity on prey consumption by striped bass larvae. Transactions of the American Fisheries Society 117: 72–77.

    Article  Google Scholar 

  • Burks, R. L., D. M. Lodge, E. Jeppesen & T. Lauridsen, 2002. Diel horizontal migration of zooplankton, costs and benefits of inhabiting the littoral. Freshwater Biology 47: 343–365.

    Article  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634–639.

    Article  Google Scholar 

  • Diehl, S., 1988. Foraging efficiency of three freshwater fishes: effects of structural complexity and light. Oikos 53: 207–214.

    Article  Google Scholar 

  • Diehl, S. & R. Kornijów, 1997. Influence of submerged macrophytes on trophic interactions among fish and macroinvertebrates. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen (eds), The structuring roles of submerged macrophytes in lakes. Springer, Berlin, Heidelberg, New York: 24–46.

    Google Scholar 

  • Fairchild, G. W., 1981. Movement and microdistribution of Sida crystallina and other littoral microcrustacea. Ecology 62: 1341–1352.

    Article  Google Scholar 

  • Flik, B. J. G., D. K. Aanen & J. Ringelberg, 1997. The extent of predation by juvenile perch during diel vertical migration of Daphnia. Archiv für Hydrobiologie Special Issues Advances in Limnology 49: 51–58.

    Google Scholar 

  • Granqvist, M. & J. Mattila, 2004. The effect of turbidity and light intensity on the consumption of mysids by juvenile perch (Perca fluvitilis L.). Hydrobiologia 514: 93–101.

    Article  Google Scholar 

  • Hagman, A. M., 2005. Sida crystallinan kesänaikainen sukkessio – kelluslehtikasvuston ja veden laadun merkitys vesikirppupopulaatiolle. (In Finnish) M.Sc.-thesis, Department of Biological and Environmental Sciences, University of Helsinki, pp 50.

  • Hemmings, C. C., 1966. Factors influencing the visibility of objects underwater. In Bainbridge, R., G. C. Evans & O. Rackham (eds), Light as an Ecological Factor. Blackwell Scientific Publications, Oxford: 359–374.

  • Horppila, J., 2005. Project background and lake description. Archiv für Hydrobiologie Special Issues Advances in Limnology 59: 1–11.

    Google Scholar 

  • Horppila, J. & L. Nurminen, 2003. Effect of submerged macrophytes on sediment resuspension and internal loading in Lake Hiidenvesi (southern Finland). Water Research 37: 4468–4474.

    Article  CAS  PubMed  Google Scholar 

  • Horppila, J. & L. Nurminen, 2005. Effect of different macrophyte growth forms on sediment and P resuspension in a shallow lake. Hydrobiologia 545: 167–175.

    Article  CAS  Google Scholar 

  • Horppila, J., A. Liljendahl-Nurminen & T. Malinen, 2004. Effect of clay turbidity and light on the predator–prey interaction between smelts and chaoborids. Canadian Journal of Fisheries and Aquatic Sciences 61: 1862–1870.

    Article  Google Scholar 

  • Horppila, J., P. Tallberg, E. Alajärvi, P. Eloranta, L. Nurminen, L. Uusitalo & A. Väisänen, 2005. Variations in the species composition and seasonal dynamics of pelagic cladocerans among adjacent lake basins. Archiv für Hydrobiologie Special Issues Advances in Limnology 59: 67–84.

    Google Scholar 

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Lauridsen, T., E. Jeppesen, M. Søndergaard & D. M. Lodge, 1997. Horizontal migration of zooplankton: predator-mediated use of macrophyte habitat. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen (eds), The structuring roles of submerged macrophytes in lakes. Springer, Berlin, Heidelberg, New York: 233–239.

    Google Scholar 

  • Lythgoe, J. N., 1980. Vision of fishes: ecological adaptations. In Ali, A. (ed.), Environmental Physiology of Fishes. Plenum Press, New York: 431–466.

    Google Scholar 

  • Moss, B., R. Kornijow & G. J. Measey, 1998. The effect of nymphaeid (Nuphar lutea) density and predation by perch (Perca fluviatilis) on the zooplankton communities in a shallow lake. Freshwater Biology 39: 689–697.

    Article  Google Scholar 

  • Nurminen, L., 2003. Macrophyte species composition reflecting water quality changes in adjacent water bodies of Lake Hiidenvesi, SW Finland. Annales Botanici Fennici 40: 199–208.

    Google Scholar 

  • Nurminen, L. & J. Horppila, 2002. A diurnal study on the distribution of filter feeding zooplankton: effect of emergent macrophytes, pH and lake trophy. Aquatic Sciences 64: 198–206.

    Article  CAS  Google Scholar 

  • Nurminen, L. & J. Horppila, 2006. Efficiency of fish feeding on plant-attached prey – effect of inorganic turbidity and plant-mediated changes in the light environment. Limnology and Oceanography 51: 1550–1555.

    Article  Google Scholar 

  • Nurminen, L., J. Horppila & P. Tallberg, 2001. Seasonal development of the cladoceran assemblage in a turbid lake: role of emergent macrophytes. Archiv für Hydrobiologie 151: 127–140.

    Google Scholar 

  • Nurminen, L., J. Horppila, A. M. Hagman, J. Niemistö & Z. Pekcan-Hekim, 2005. Synthesis on the role of macrophytes in a clay-turbid lake-structuring and stabilizing functions affecting water quality. Archiv für Hydrobiologie Special Issues Advances in Limnology 59: 105–123.

    CAS  Google Scholar 

  • Nurminen, L., J. Horppila & Z. Pekcan-Hekim, 2007. Effect of light and predator abundance on the habitat choice of plant-attached zooplankton. Freshwater Biology 52: 539–548.

    Article  Google Scholar 

  • Pekcan-Hekim, Z., 2007. Effects of turbidity on feeding and distribution of fish. Ph.D. Thesis. University of Helsinki. Department of Biological and Environmental Sciences.

  • Pekcan-Hekim, Z., J. Horppila, L. Nurminen & J. Niemistö, 2005. Diel changes in habitat preferences and diet of perch (Perca fluviatilis), roach (Rutilus rutilus) and white bream (Abramis björkna). Archiv für Hydrobiologie Special Issues Advances in Limnology 59: 173–187.

    Google Scholar 

  • Richmond, H. E., T. R. Hrabik & A. F. Mensigner, 2004. Light intensity, prey detection and foraging mechanisms of age 0 year yellow perch. Journal of Fish Biology 65: 195–205.

    Article  Google Scholar 

  • Sandström, A., 1999. Visual ecology of fish – a review with special reference to percids. Fiskerieverket Rapport 2: 45–80.

    Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman & Hall, London.

    Google Scholar 

  • Utne-Palm, A. C., 1999. The effect of prey mobility, prey contrast, turbidity and spectral composition on reaction distance of Gobiusculus flavescens to its planktonic prey. Journal of Fish Biology 54: 1244–1258.

    Article  Google Scholar 

  • Utne-Palm, A. C., 2002. Visual feeding of fish in a turbid environment: physical and behavioural aspects. Marine & Freshwater Behaviour & Physiology 35(1–2): 111–128.

    Article  Google Scholar 

  • Vinyard, G. L. & J. O′Brien, 1976. Effects of light and turbidity on the reactive distance of bluegill (Lepomis macrochirus). Journal of the Fisheries Research Board of Canada 33: 2845–2849.

    Google Scholar 

  • Ware, D. M., 1973. Risk of epibenthic prey to predation by rainbow trout (Salmo gairdneri). Journal of the Fisheries Research Board of Canada 30: 787–797.

    Google Scholar 

Download references

Acknowledgements

The experiments conducted comply with the regulations of the University of Helsinki Animal Welfare Commission (HY 71-04). The study was financially supported by the Academy of Finland (project 124206) and University of Helsinki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leena Nurminen.

Additional information

Guest editors: M. Meerhoff, M. Beklioglu, R. Burks, F. García-Rodríguez, N. Mazzeo & B. Moss / Structure and Function of World Shallow Lakes: Proceedings from the 6th Shallow Lakes Congress, held in Punta del Este, Uruguay, 23–28 November, 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nurminen, L., Pekcan-Hekim, Z., Repka, S. et al. Effect of prey type and inorganic turbidity on littoral predator–prey interactions in a shallow lake: an experimental approach. Hydrobiologia 646, 209–214 (2010). https://doi.org/10.1007/s10750-010-0175-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0175-1

Keywords

Navigation