Hydrobiologia

, Volume 646, Issue 1, pp 73–90 | Cite as

Impacts of climate warming on lake fish community structure and potential effects on ecosystem function

  • Erik Jeppesen
  • Mariana Meerhoff
  • Kerstin Holmgren
  • Ivan González-Bergonzoni
  • Franco Teixeira-de Mello
  • Steven A. J. Declerck
  • Luc De Meester
  • Martin Søndergaard
  • Torben L. Lauridsen
  • Rikke Bjerring
  • José Maria Conde-Porcuna
  • Néstor Mazzeo
  • Carlos Iglesias
  • Maja Reizenstein
  • Hilmar J. Malmquist
  • Zhengwen Liu
  • David Balayla
  • Xavier Lazzaro
SHALLOW LAKES

Abstract

Fish play a key role in the trophic dynamics of lakes, not least in shallow systems. With climate warming, complex changes in fish community structure may be expected owing to the direct and indirect effects of temperature, and indirect effects of eutrophication, water-level changes and salinisation on fish metabolism, biotic interactions and geographical distribution. We review published and new data supporting the hypotheses that, with a warming climate, there will be changes in: fish community structure (e.g. higher or lower richness depending on local conditions); life history traits (e.g. smaller body size, shorter life span, earlier and less synchronised reproduction); feeding mode (i.e. increased omnivory and herbivory); behaviour (i.e. stronger association with littoral areas and a greater proportion of benthivores); and winter survival. All these changes imply higher predation on zooplankton and macroinvertebrates with increasing temperatures, suggesting that the changes in the fish communities partly resemble, and may intensify, the effects triggered by eutrophication. Modulating factors identified in cold and temperate systems, such as the presence of submerged plants and winter ice cover, seem to be weaker or non-existent in warm(ing) lakes. Consequently, in the future lower nutrient thresholds may be needed to obtain clear-water conditions and good ecological status in the future in currently cold or temperate lakes. Although examples are still scarce and more research is needed, we foresee biomanipulation to be a less successful restoration tool in warm(ing) lakes without a strong reduction of the nutrient load.

Keywords

Aquatic food webs Sub-tropical lakes Piscivory Planktivory Benthivory Eutrophication Salinisation Biomanipulation 

References

  1. Abell, R., M. L. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. C. Balderas, W. Bussing, M. L. J. Stiassny, P. Skelton, G. R. Allen, P. Unmack, A. Naseka, R. Ng, N. Sindorf, J. Robertson, E. Armijo, J. V. Higgins, T. J. Heibel, E. Wikramanayake, D. Olson, H. L. Lopez, R. E. Reis, J. G. Lundberg, M. H. S. Perez & P. Petry, 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58: 403–414.CrossRefGoogle Scholar
  2. Atkinson, D. & R. M. Sibly, 1997. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends in Ecology and Evolution 12: 235–239.CrossRefGoogle Scholar
  3. Bachmann, R. W., C. A. Horsburgh, M. V. Hoyer, M. L. K. Mataraza & D. E. Canfield, 2002. Relations between trophic state indicators and plant biomass in Florida lakes. Hydrobiologia 470: 219–234.CrossRefGoogle Scholar
  4. Balayla, D. J., T. L. Lauridsen, M. Søndergaard & E. Jeppesen, 2010. Larger zooplankton in Danish lakes after cold winters: are winter fish kills of importance? Hydrobiologia. doi:10.1007/s10750-010-0164-4.
  5. Behrens, M. D. & K. D. Lafferty, 2007. Temperature and diet effects on omnivorous fish performance: implications for the latitudinal diversity gradient in herbivorous fishes. Canadian Journal of Fisheries and Aquatic Sciences 64: 867–873.CrossRefGoogle Scholar
  6. Beklioglu, M., S. Romo, I. Kagalou, X. Quintana & E. Bécares, 2007. State of the art in the functioning of shallow Mediterranean lakes: workshop conclusions. Hydrobiologia 584: 317–326.CrossRefGoogle Scholar
  7. Bergmann, C., 1847. Uber die Verhältnisse der Wärmeökonomie der Tiere zu ihrer Grösse. Gottinger Studien 1: 595–708.Google Scholar
  8. Blanck, A. & N. Lammouroux, 2007. Large-scale intraspecific variation in life-history traits of 44 European freshwater fish. Journal of Biogeography 34: 862–875.CrossRefGoogle Scholar
  9. Blenckner, T., R. Adrian, D. M. Livingstone, E. Jennings, G. A. Weyhenmeyer, D. G. George, T. Jankowski, M. Järvinen, C. N. Aonghusa, T. Nõges, D. Straile & K. Teubner, 2007. Large-scale climatic signatures in lakes across Europe: a meta-analysis. Global Change Biology 13: 1314–1326.CrossRefGoogle Scholar
  10. Brinkmann, W. L. F. & U. M. Santos, 1973. Heavy fish-kill in unpolluted flood-plain lakes of Central Amazonia. Brazilian Biology Conservation 5: 146–197.CrossRefGoogle Scholar
  11. Brucet, S., D. Boix, S. Gascan, J. Sala, X. D. Quintana, A. Badosa, M. Søndergaard, T. L. Lauridsen & E. Jeppesen, 2009. Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain). Ecography 32: 692–702.CrossRefGoogle Scholar
  12. Carpenter, S. R. & J. F. Kitchell (eds), 1993. The Trophic Cascade in Lakes. Cambridge University Press, Cambridge: 399 pp.Google Scholar
  13. Danger, M., G. Lacroix, S. Kâ, E. H. Ndour, D. Corbin & X. Lazzaro, 2009. Food-web structure and functioning of temperate and tropical lakes: a stoichiometric viewpoint. Annales de Limnologie – International Journal of Limnology 45: 11–21.CrossRefGoogle Scholar
  14. Declerck, S. A. J., J. Vandekerkhove, L. Johansson, K. Muylaert, J. M. Conde-Porcuna, K. Van, C. P. der Gucht, T. Martinez, K. Lauridsen, G. Schwenk, W. Zwart, J. Rommens, E. Lopez-Ramos, W. Jeppesen, L. Vyverman, L. Brendonck & L. De Meester, 2005. Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86: 1905–1915.CrossRefGoogle Scholar
  15. Dejenie, T., T. Asmelash, L. De Meester, A. Mulugeta, A. Gebrekidan, S. Risch, A. Pals, K. Van der Gucht, W. Vyverman, J. Nyssen, S. Deckers & S. Declerck, 2008. Limnological and ecological characteristics of tropical highland reservoirs in Tigray, Northern Ethiopia. Hydrobiologia 610: 193–209.CrossRefGoogle Scholar
  16. Dembski, S., G. Masson, D. Monnier, P. Wagner & J. C. Phan, 2006. Consequences of elevated temperatures on life-history traits of an introduced fish, pumpkinseed Lepomis gibbosus. Journal of Fish Biology 69: 331–346.CrossRefGoogle Scholar
  17. Drenner, R. W. & K. D. Hambright, 1999. Biomanipulation of fish assemblages as a lake restoration technique. Archiv für Hydrobiologie 146: 129–165.Google Scholar
  18. Durant, J. M., D. O. Hjermann, G. Ottersen & N. C. Stenseth, 2007. Climate and the match or mismatch between predator requirements and resource availability. Climate Research 33: 271–283.CrossRefGoogle Scholar
  19. Elliott, J. M., 1994. Quantitative Ecology and the Brown Trout. Oxford University Press, Oxford.Google Scholar
  20. Fernando, C. H., 1994. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia 272: 105–123.CrossRefGoogle Scholar
  21. Feuchtmayr, H., R. Moran, K. Hatton, L. Connor, T. Heyes, B. Moss, I. Harvey & D. Atkinson, 2009. Global warming and eutrophication: effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms. Journal of Applied Ecology 46: 713–723.CrossRefGoogle Scholar
  22. Gelós, M., F. Teixeira-de Mello, G. Goyenola, C. Iglesias, C. Fosalba, F. García-Rodríguez, J. P. Pacheco, S. García & M. Meerhoff, 2010. Seasonal and diel changes in fish activity and potential cascading effects in subtropical shallow lakes with different water transparency. Hydrobiologia. doi:10.1007/s10750-010-0170-6.
  23. Griffiths, D., 2006. Pattern and process in the ecological biogeography of European freshwater fish. Journal of Animal Ecology 75: 734–751.CrossRefPubMedGoogle Scholar
  24. Grimalt, J. O., J. Catalan, P. Fernandez, B. Piña & J. Munthe, 2010. Chapter 7: distribution of persistent organic pollutants and mercury in freshwater ecosystems under changing climate conditions. In Kernan, M., R. Battarbee & B. Moss (eds), Climate Change and Freshwaters. Blackwell, Oxford.Google Scholar
  25. Gyllström, M., L.-A. Hansson, E. Jeppesen, F. Garcia-Criado, E. Gross, K. Irvine, T. Kairesalo, R. Kornijów, M. Miracle, M. Nykänen, T. Nõges, S. Romo, D. Stephen, E. Van Donk & B. Moss, 2005. The role of climate in shaping zooplankton communities of shallow lakes. Limnology and Oceanography 50: 2008–2021.CrossRefGoogle Scholar
  26. Harrod, C., D. Griffiths, R. Rosell & T. K. McCarthy, 2002. Current status of the pollan (Coregonus autumnalis Pallas 1776) in Ireland. Archiv für Hydrobiologie, Special Issues Advances in Limnology 57: 627–638.Google Scholar
  27. Hartmann, J., 1977. Fischereiliche Veranderungen in kulturbedingt eutrophierenden Seen. Schweizerische Zhurnal der Hydrologie 39: 243–254.CrossRefGoogle Scholar
  28. Havens, K. E., 2002. Zooplankton structure and potential food web interactions in the plankton of a subtropical chain-of-lakes. The Scientific World 2: 926–942.Google Scholar
  29. Horppila, J., H. Peltonen, T. Malinen, E. Luokkanen & T. Kairesalo, 1998. Top-down or bottom-up effects by fish: issues of concern in biomanipulation of lakes. Restoration Ecology 6: 20–28.CrossRefGoogle Scholar
  30. Iglesias, C., N. Mazzeo, G. Goyenola, C. Fosalba, F. Teixeira-de Mello & E. Jeppesen, 2008. Field and experimental evidence of the effect of Jenynsia multidentata Jenyns (Cyprinodontiformes, Anablepidae) a small omnivorous–planktivorous fish, on the size distribution of zooplankton in subtropical lakes. Freshwater Biology 53: 1797–1807.CrossRefGoogle Scholar
  31. IPCC, 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. IPCC, WGII.Google Scholar
  32. Jackson, L. J., M. Søndergaard, T. L. Lauridsen & E. Jeppesen, 2007. A comparison of shallow Danish and Canadian lakes and implications of climate change. Freshwater Biology 52: 1782–1792.CrossRefGoogle Scholar
  33. Jensen, E., S. Brucet, M. Meerhoff, L. Nathansen & E. Jeppesen, 2010. Community structure and diel migration of zooplankton in brackish lakes: role of salinity and predators. Hydrobiologia. doi:10.1007/s10750-010-0172-4.
  34. Jeppesen, E., M. Søndergaard, E. Kanstrup, B. Petersen, R. B. Eriksen, M. Hammershøj, E. Mortensen, J. P. Jensen & A. Have, 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia 276: 15–30.CrossRefGoogle Scholar
  35. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. L. Lauridsen & F. Landkildehus, 2000. Trophic structure, species richness and biodiversity in Danish Lakes: changes along a phosphorus gradient. Freshwater Biology 45: 201–218.CrossRefGoogle Scholar
  36. Jeppesen, E., M. Søndergaard, J. P. Jensen, K. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, K. Kangur, J. Köhler, S. Körner, E. Lammens, T. L. Lauridsen, M. Manca, R. Miracle, B. Moss, P. Nõges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Willén & M. Winder, 2005. Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.CrossRefGoogle Scholar
  37. Jeppesen, E., M. Søndergaard, M. Meerhoff, T. L. Lauridsen & J. P. Jensen, 2007a. Shallow lake restoration by nutrient loading reduction – some recent findings and challenges ahead. Hydrobiologia 584: 239–252.CrossRefGoogle Scholar
  38. Jeppesen, E., M. Søndergaard, A. R. Pedersen, K. Jürgens, A. Strzelczak, T. L. Lauridsen & L. S. Johansson, 2007b. Salinity induced regime shift in shallow brackish lagoons. Ecosystems 10: 47–57.CrossRefGoogle Scholar
  39. Jeppesen, E., B. Kronvang, M. Meerhoff, M. Søndergaard, K. M. Hansen, H. E. Andersen, T. L. Lauridsen, M. Beklioglu, A. Özen & J. E. Olesen, 2009. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. Journal of Environmental Quality 38: 1030–1041.CrossRefGoogle Scholar
  40. Jones, J. I. & C. D. Sayer, 2003. Does the fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes? Ecology 84: 2155–2167.CrossRefGoogle Scholar
  41. Kalff, J., 2000. Limnology. Prentice Hall, Upper Saddle River, NJ: 592 pp.Google Scholar
  42. Kosten, S., A. Kamarainen, E. Jeppesen, E. H. van Nes, E. T. H. M. Peeters, N. Mazzeo, L. Sass, J. Hauxwell, N. Hansel-Welch, T. L. Lauridsen, M. Søndergaard, R. W. Bachmann, G. Lacerot & M. Scheffer, 2009. Climate-related differences in the dominance of submerged macrophytes in shallow lakes. Global Change Biology 15: 2503–2517.CrossRefGoogle Scholar
  43. Kristmundsson, Á., T. Antonsson & F. Árnason, 2010. First record of proliferative kidney disease in Iceland. Bulletin of the European Association of Fish Pathologists 30(1): 35–40.Google Scholar
  44. Kruk, C., L. Rodríguez-Gallego, M. Meerhoff, F. Quintans, F. Scasso, G. Lacerot, N. Mazzeo, J. Paggi, E. Peeters & M. Scheffer, 2009. Determinants of diversity in subtropical shallow lakes (Atlantic coast, Uruguay). Freshwater Biology 54: 2628–2641.CrossRefGoogle Scholar
  45. Lappalainen, J. & H. Lehtonen, 1997. Temperature habitats for freshwater fishes in a warming climate. Boreal Environment Research 2: 69–84.Google Scholar
  46. Lappalainen, J. & A. S. Tarkan, 2007. Latitudinal gradients in onset date, onset temperature and duration of spawning of roach. Journal of Fish Biology 70: 441–450.CrossRefGoogle Scholar
  47. Lappalainen, J., H. Lehtonen, P. Böhling & V. Erm, 1996. Covariation in year-class strength of perch, Perca fluviatilis L. and pikeperch, Stizostedion lucioperca (L.). Annales Zoologici Fennici 33: 421–426.Google Scholar
  48. Lappalainen, J., M. Vinni & J. Kjellman, 2003. Diet, condition and mortality of pikeperch (Sander lucioperca) during their first winter. Archiv für Hydrobiologie, Special Issues Advances in Limnology 59: 207–217.Google Scholar
  49. Lappalainen, J., A. S. Tarkan & C. Harrod, 2008. A meta-analysis of latitudinal variations in life-history traits of roach, Rutilus rutilus, over its geographical range: linear or non-linear relationships? Freshwater Biology 53: 1491–1501.CrossRefGoogle Scholar
  50. Laws, E. A. & J. R. S. Weisburd, 1990. Use of silver carp to control algal biomass in aquatic ponds. Progress in Fish Culture 52: 1–8.CrossRefGoogle Scholar
  51. Lawton, J. H., 1991. Species richness and population dynamics of animal assemblages: patterns on body size: abundance space. Philosophical Transactions of the Royal Society of London, Series B 330: 283–291.CrossRefGoogle Scholar
  52. Lazzaro, X., 1997. Do the trophic cascade hypothesis and classical biomanipulation approaches apply to tropical lakes and reservoirs? Verhandlungen der Internationale Vereinigung für Limnologie 26: 719–730.Google Scholar
  53. Lazzaro, X. & F. Starling, 2005. Using biomanipulation to control eutrophication in a shallow tropical urban reservoir (Lago Paranoá, Brazil). In Reddy, M. V. (ed.), Restoration and Management of Tropical Eutrophic Lakes. Oxford & IBH Publ. Co. Pvt. Ltd., Science Publishers Inc., New Delhi, New Hampshire, USA: 361–387.Google Scholar
  54. Lazzaro, X., M. Bouvy, R. A. Ribeiro-Filho, V. S. Oliveira, L. T. Sales, A. R. M. Vasconcelos & M. R. Mata, 2003. Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs? Freshwater Biology 48: 649–668.CrossRefGoogle Scholar
  55. Lehtonen, H., 1996. Potential effects of global warming on northern European freshwater fish and fisheries. Fisheries Management Ecology 3: 59–71.CrossRefGoogle Scholar
  56. Lehtonen, H. & J. Lappalainen, 1995. The effects of climate on the year-class variations of certain freshwater fish species. In Beamish, R. J. (ed.), Climate Change and Northern Fish Populations, Vol. 121. Canadian Special Publication of Fisheries and Aquatic Sciences, Ottawa, Canada: 37–44.Google Scholar
  57. Malmquist, H. J. 2004. Life history traits of Arctic charr and environmental factors: local variability and latitudinal gradients. The ACIA International Scientific Symposium on Climate Change in the Arctic: Extended Abstracts. AMAP Report 2004:4. Poster Session A2: Paper 8: 45–47.Google Scholar
  58. Malmquist, H. J., Th. Antonsson, H. R. Ingvason & F. Árnason, 2009. Salmonid fish and warming of shallow Lake Elliðavatn in Southwest Iceland. Verhandlungen der Internationale Vereinigung der Limnologie 30: 1127–1132.Google Scholar
  59. Matveev, V., L. Matveeva & G. Jones, 1994. Study of the ability of Daphnia carinata King to control phytoplankton and resist cyanobacterial toxicity: implications for biomanipulation in Australia. Australian Journal of Marine & Freshwater Research 45: 899–904.CrossRefGoogle Scholar
  60. Matyas, K., I. Oldal, J. Korponai, I. Tatrai & G. Pau′ lovits, 2003. Indirect effect of different fish communities in nutrient chlorophyll relationship in shallow hypertrophic water quality reservoir. Hydrobiologia 504: 231–239.CrossRefGoogle Scholar
  61. Mazzeo, N., L. Rodriguez-Gallego, C. Kruk, M. Meerhoff, J. Gorga, G. Lacerot, F. Quintans, M. Loureiro, D. Larrea & F. Garcia-Rodriguez, 2003. Effects of Egeria densa Planch. beds on a shallow lake without piscivorous fish. Hydrobiologia 506: 591–602.CrossRefGoogle Scholar
  62. Mazzeo, N., C. Iglesias, F. Teixeira-de Mello, A. Borthagaray, C. Fosalba, R. Ballabio, D. Larrea, J. Vilches & E. Jeppesen, 2010. Trophic cascade effects of Hoplias malabaricus (Characiformes, Eritrinidae) in subtropical food webs: a mesocosm approach. Hydrobiologia. doi:10.1007/s10750-010-0197-8.
  63. Meerhoff, M., N. Mazzeo, B. Moss & L. Rodríguez-Gallego, 2003. The structuring role of free-floating versus submerged plants in a shallow subtropical lake. Aquatic Ecology 37: 377–391.CrossRefGoogle Scholar
  64. Meerhoff, M., J. M. Clemente, F. Teixeira-de Mello, C. Iglesias, A. R. Pedersen, E. Jeppesen & E., 2007a. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.CrossRefGoogle Scholar
  65. Meerhoff, M., C. Iglesias, F. Teixeira-de Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007b. Effects of contrasting climates and habitat complexity on community structure and predator avoidance behaviour of zooplankton in the shallow lake littoral. Freshwater Biology 52: 1009–1021.CrossRefGoogle Scholar
  66. Mergeay, J., S. Declerck, D. Verschuren & L. De Meester, 2006. Daphnia community analysis in shallow Kenyan lakes and ponds using dormant eggs in surface sediments. Freshwater Biology 51: 399–411.CrossRefGoogle Scholar
  67. Moran, R., I. Harvey, B. Moss, H. Feuchtmayr, K. Hatton, T. Heyes & D. Atkinson, 2009. Influence of simulated climate change and eutrophication on three-spined stickleback populations: a large scale mesocosm experiment. Freshwater Biology (online).Google Scholar
  68. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200(201): 367–377.CrossRefGoogle Scholar
  69. Moss, B., D. Stephen, D. M. Balayla, E. Becares, S. E. Collings, C. Fernandez-Alaez, M. Fernandez-Alaez, C. Ferriol, P. Garcia, J. Goma, M. Gyllstrom, L.-A. Hansson, J. Hietala, T. Kairesalo, M. R. Miracle, S. Romo, J. Rueda, V. Russell, A. Stahl-Delbanco, M. Svensson, K. Vakkilainen, M. Valentin, W. J. Van De Bund, E. Van Donk, E. Vicente & M. J. Villena, 2004. Continental-scale patterns of nutrient and fish effects on shallow lakes: synthesis of a pan-European mesocosm experiment. Freshwater Biology 49: 1633–1649.CrossRefGoogle Scholar
  70. Nagdali, S. S. & P. K. Gupta, 2002. Impact of mass mortality of a mosquito fish, Gambussia affinis, on the ecology of a freshwater eutrophic lake (Lake Naini Tal, India). Hydrobiologia 468: 45–52.CrossRefGoogle Scholar
  71. Norton, S. F. & E. L. Brainerd, 1993. Convergence on the feeding mechanics of ecomorphologically similar species in the Centrarhidae and Cichlidae. Journal of Experimental Biology 176: 11–29.Google Scholar
  72. Pacheco, J. P., C. Iglesias, M. Meerhoff, C. Fosalba, G. Goyenola, F. Teixeira-de Mello, S. García & F. García-Rodríguez, 2010. Phytoplankton community structure in five subtropical shallow lakes with different trophic state (Uruguay): a morphology based approach. Hydrobiologia. doi:10.1007/s10750-010-0180-4.
  73. Parmesan, C., 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics 37: 637–669.CrossRefGoogle Scholar
  74. Pelicice, F. M. & A. A. Agostinho, 2006. Feeding ecology of fishes associated with Egeria spp. patches in a tropical reservoir, Brazil. Ecology of Freshwater Fish 15: 10–19.CrossRefGoogle Scholar
  75. Persson, L., 1986. Temperature-induced shift in foraging ability in two fish species, Roach (Rutilus rutilus) and Perch (Perca fluviatilis): implications for coexistence between poikilotherms. Journal of Animal Ecology 55: 829–839.CrossRefGoogle Scholar
  76. Persson, L. & P. Eklöv, 1995. Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology 76: 70–81.CrossRefGoogle Scholar
  77. Persson, L., S. Diehl, L. Johansson, G. Andersson & S. F. Hamrin, 1991. Shifts in fish communities along the productivity gradient of temperate lakes—patterns and the importance of size-structured interactions. Journal of Fish Biology 38: 281–293.CrossRefGoogle Scholar
  78. Prejs, A., 1984. Herbivory by temperate freshwater fishes and its consequences. Environmental Biology of Fishes 10: 281–296.CrossRefGoogle Scholar
  79. Riget, F., E. Jeppesen, F. Landkildehus, T. L. Lauridsen, P. Geertz-Hansen, K. Christoffersen & H. Sparholt, 2000. Landlocked arctic char (Salvelinus alpinus) population structure and lake morphometry in Greenland—is there a connection? Polar Biology 23: 550–558.CrossRefGoogle Scholar
  80. Scasso, F., N. Mazzeo, J. Gorga, C. Kruk, G. Lacerot, J. M. Clemente, D. Fabián & S. Bonilla, 2001. Limnological changes of a subtropical shallow hypertrophic lake during its restoration. Two years of whole-lake experiments. Aquatic Conservation: Marine and Freshwater Ecosystems 11: 31–44.CrossRefGoogle Scholar
  81. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.CrossRefGoogle Scholar
  82. Sereda, J. M., J. F. Hudson & P. D. McLoughlin, 2008. General empirical models for predicting the release of nutrients by fish, with a comparison between detritivores and non-detritivores. Freshwater Biology 53: 2133–2144.Google Scholar
  83. Shuter, B. J. & J. R. Post, 1990. Climate, population, viability, and the zoogeography of temperate fishes. Transactions of the American Fisheries Society 119: 314–336.CrossRefGoogle Scholar
  84. Starling, F., X. Lazzaro, C. Cavalcanti & R. Moreira, 2002. Contribution of omnivorous tilapia to eutrophication of a shallow reservoir: evidence from a fish kill. Freshwater Biology 47: 2443–2452.CrossRefGoogle Scholar
  85. Sterud, E., T. Forseth, O. Ugedal, T. T. Poppe, A. Jørgensen, T. Bruheim, H.-P. Fjeldstad & T. Atle Mo, 2007. Severe mortality in wild Atlantic salmon Salmo salar due to proliferative kidney disease (PKD) caused by Tetracapsuloides bryosalmonae (Myxozoa). Diseases of Aquatic Organisms 77: 191–198.CrossRefPubMedGoogle Scholar
  86. Straile, D., R. Eckmann, T. Jungling, G. Thomas & H. Loffler, 2007. Influence of climate variability on whitefish (Coregonus lavaretus) year-class strength in a deep, warm monomictic lake. Oecologia 151: 521–529.CrossRefPubMedGoogle Scholar
  87. Teixeira-de Mello, F., M. Meerhoff, Z. Pekcan-Hekim & E. Jeppesen, 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshwater Biology 54: 1202–1215.CrossRefGoogle Scholar
  88. Tolonen, A., J. Lappalainen & E. Pulliainen, 2003. Seasonal growth and year class strength variations of perch near the northern limits of its distribution range. Journal of Fish Biology 63: 176–186.CrossRefGoogle Scholar
  89. van Leeuwen, E., G. Lacerot, E. H. Van Nes, L. Hemerika & M. Scheffer, 2007. Reduced top-down control of phytoplankton in warmer climates can be explained by continuous fish reproduction. Ecological Modelling 206: 205–212.CrossRefGoogle Scholar
  90. Vander Zanden, M. J. & Y. Vadeboncoeur, 2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83: 2152–2161.CrossRefGoogle Scholar
  91. Vanni, M. J., 2002. Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics 33: 341–370.CrossRefGoogle Scholar
  92. Venne, H. & P. Magnan, 1989. Life history tactics in landlocked Arctic charr (Salvelinus alpinus): a working hypothesis. Physiology and Ecology Japan 1: 239–248.Google Scholar
  93. Winemiller, K. O., 1990. Spatial and temporal variation in tropical fish trophic network. Ecological Monographs 60: 331–367.CrossRefGoogle Scholar
  94. Winfield, I. J., J. M. Fletcher & J. B. James, 2008. The Arctic charr (Salvelinus alpinus) populations of Windermere, UK: population trends associated with eutrophication, climate change and increased abundance of roach (Rutilus rutilus). Environmental Biology of Fishes 83: 25–35.CrossRefGoogle Scholar
  95. Wu, J., P. Xie, M. Dai & J. Wang, 1997. Effects of silver carp density on zooplankton and water quality: implications for eutrophic lakes in China. Journal of Freshwater Ecology 12: 437–444.Google Scholar
  96. Xu, J. & P. Xie, 2004. Studies on the food web structure of Lake Donghu using stable carbon and nitrogen isotope ratios. Journal of Freshwater Ecology 19: 645–650.Google Scholar
  97. Zhou, Q., P. Xie, J. Xu, Z.-X. Ke, L.-G. Guo & T. Cao, 2009. Seasonal variations in stable isotope ratios of two biomanipulation fishes and seston in a large pen culture in hypereutrophic Meiliang Bay, Lake Taihu. Ecological Engineering 35: 1603–1609.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Erik Jeppesen
    • 1
    • 2
  • Mariana Meerhoff
    • 1
    • 3
    • 4
  • Kerstin Holmgren
    • 5
  • Ivan González-Bergonzoni
    • 3
    • 4
  • Franco Teixeira-de Mello
    • 3
    • 4
  • Steven A. J. Declerck
    • 6
  • Luc De Meester
    • 6
  • Martin Søndergaard
    • 1
  • Torben L. Lauridsen
    • 1
  • Rikke Bjerring
    • 1
  • José Maria Conde-Porcuna
    • 7
  • Néstor Mazzeo
    • 3
  • Carlos Iglesias
    • 1
    • 2
    • 3
    • 4
  • Maja Reizenstein
    • 5
  • Hilmar J. Malmquist
    • 8
  • Zhengwen Liu
    • 9
    • 10
  • David Balayla
    • 1
  • Xavier Lazzaro
    • 11
  1. 1.National Environmental Research InstituteAarhus UniversitySilkeborgDenmark
  2. 2.Department of Biological SciencesAarhus UniversityAarhusDenmark
  3. 3.Grupo de Ecología y Rehabilitación de Sistemas Acuáticos, Departamento de Ecología, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  4. 4.Asociación Civil Investigación y Desarrollo I+DMontevideoUruguay
  5. 5.Institute of Freshwater ResearchSwedish Board of FisheriesDrottningholmSweden
  6. 6.Laboratory of Aquatic Ecology and Evolutionary BiologyKatholieke Universiteit LeuvenLeuvenBelgium
  7. 7.Instituto del AguaUniversidad de GranadaGranadaSpain
  8. 8.Natural History Museum of KópavogurKópavogurIceland
  9. 9.Chinese Academy of SciencesNanjing Institute of Geography and LimnologyNanjingChina
  10. 10.Institute of HydrobiologyJinan UniversityGuangzhouChina
  11. 11.IRD, UMR 207 BOREAParis Cedex 5France

Personalised recommendations