, Volume 648, Issue 1, pp 35–49 | Cite as

Sediment organic matter in mountain lakes of north-western Slovenia and its stable isotopic signatures: records of natural and anthropogenic impacts

  • Polona VrečaEmail author
  • Gregor Muri


Sediment organic matter (OM) and its stable carbon and nitrogen isotopes were studied in 12 Slovenian mountain lakes in the Julian Alps. The lakes have different catchment areas and display a range of trophic states. Surface sediment atomic C/N ratios ranged from 8.4 to 13.2. Based on these C/N ratios, we concluded that autochthonous OM dominates in these lakes and constitutes approximately 65–92% of the total OM. Higher contributions of autochthonous OM sources were observed in lakes above the tree line. Relatively constant C/N ratios in the deeper sediments suggest that degradation processes are most intense in the upper few centimetres of the sediments and/or that remaining OM is relatively resistant to further degradation. Surface sediment δ13C and δ15N values ranged from −36.1 to −14.1‰ and from −5.2 to +1.1‰, respectively. In sediment cores from seven lakes, higher δ13C and lower δ15N values characterize oligotrophic lakes situated above the tree line, whereas the reverse is true for eutrophic lakes below the tree line that are also exposed to more anthropogenic impact. Carbon and nitrogen biogeochemical cycling differs considerably among the lakes. Stratigraphic shifts in carbon, total nitrogen, C/N ratios and stable C and N isotopes in cores record changes in inputs, and hence water column processes, as well as alterations in loading to the lakes. The stratigraphic variations are also the result of post-depositional diagenetic changes in the upper few centimetres of sediment. All the lakes show impacts from recent increases in atmospheric deposition of dissolved inorganic nitrogen. Application of sediment OM analysis thus proved to be useful to reconstruct paleoecological changes in sensitive mountain lake ecosystems that are either natural and/or anthropogenically derived.


Alpine lakes Atmospheric deposition Carbon C/N ratios Julian Alps Nitrogen, stable isotopes 



This research was carried out as a part of the Slovene National Research Projects Z1-3342, J1-6509, J1-6717 and research programmes P0-0531-0106, P1-0143 and P0-0504-0105 funded by the Slovenian Research Agency. We thank A. Brancelj, B. Čermelj, M. Šiško, S. Lukančič, T. Mezek and U. Žibrat (National Institute of Biology) and S. Žigon (Jožef Stefan Institute) for their valuable help during sampling and analyses. The valuable comments of M. Brenner, three anonymous reviewers and editorial handling of H. Eggermont are much appreciated. Special thanks are given to A. R. Byrne for editorial corrections.


  1. Battarbee, R. W., R. Thompson, J. Catalan, J. A. Grytnes & H. J. B. Birks, 2002. Climate variability and ecosystem dynamics of remote alpine and arctic lakes: the MOLAR project. Journal of Paleolimnology 28: 1–6.CrossRefGoogle Scholar
  2. Battarbee, R. W., M. Kernan & N. Rose, 2009. Threatened and stressed mountain lakes in Europe: assessment and progress. Aquatic Ecosystems Health & Management 12: 118–129.CrossRefGoogle Scholar
  3. Brancelj, A., 1999. The extinction of Arctodiaptomus alpinus (Copepoda) following the introduction of charr into a small alpine lake Dvojno jezero (NW Slovenia). Aquatic Ecology 33: 355–361.CrossRefGoogle Scholar
  4. Brancelj, A., 2002. Fauna: zooplankton, benthos and fish. In Brancelj, A. (ed.), High-Mountain Lakes in the Eastern Part of the Julian Alps. ZRC Publishing, Ljubljana: 137–158.Google Scholar
  5. Brancelj, A., M. Šiško, I. Rejec Brancelj, Z. Jeran & R. Jaćimović, 2000. Effects of land use and fish stocking on a mountain lake – evidence from the sediment. Periodicum Biologorum 3: 259–268.Google Scholar
  6. Brancelj, A., M. Šiško, G. Muri, P. Appleby, A. Lami, E. Shilland, N. L. Rose, C. Kamenik, S. J. Brooks & J. A. Dearing, 2002. Lake Jezero v Ledvici (NW Slovenia) – changes in sediment records over the last two centuries. Journal of Paleolimnology 28: 47–58.CrossRefGoogle Scholar
  7. Brenner, M., T. J. Whitmore, J. H. Curtis, D. A. Hodell & C. L. Schelske, 1999. Stable isotope (delta C-13 and delta N-15) signatures of sedimented organic matter as indicators of historic lake trophic state. Journal of Paleolimnology 22: 205–221.CrossRefGoogle Scholar
  8. Cole, J. J., N. F. Caraco, G. W. Kling & T. K. Kratz, 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265: 1568–1570.CrossRefPubMedGoogle Scholar
  9. Dobravec, J. & M. Šiško, 2002. Geographical location and description of the lakes. In Brancelj, A. (ed.), High-Mountain Lakes in the Eastern Part of the Julian Alps. ZRC Publishing, Ljubljana: 49–76.Google Scholar
  10. Enders, S. K., M. Pagani, S. Pantoja, J. S. Baron, A. P. Wolfe, N. Pedentchouk & L. Nuñez, 2008. Compound-specific stable isotopes of organic compounds from lake sediments track recent environmental changes in an alpine ecosystem, Rocky Mountain National Park, Colorado (USA). Limnology and Oceanography 53: 1468–1478.Google Scholar
  11. Enters, D., A. Lucke & B. Zolitschka, 2006. Effects of land-use changes on deposition and composition of organic matter in Frickenhausser See, northern Bavaria, Germany. Science of the Total Environment 369: 178–187.CrossRefPubMedGoogle Scholar
  12. Fenchel, T., G. M. King & T. H. Blackburn, 1998. Bacterial biogeochemistry: the ecophysiology of mineral cycling. Academic Press, London.Google Scholar
  13. Froelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Heath, D. Cullen, P. Dauphin, D. Hammond, B. Hartman & V. Maynard, 1979. Early oxidation of organic matter in pelagic sediments of the Eastern Equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta 43: 1075–1091.CrossRefGoogle Scholar
  14. Galman, V., J. Rydberg & C. Bigler, 2009. Decadal diagenetic effects on δ13C and δ15N studied in varved lake sediment. Limnology and Oceanography 54: 917–924.Google Scholar
  15. Gu, B., C. L. Schelske & M. Brenner, 1996. Relationships between sediment and plankton isotope ratios (δ13C and δ15N) and primary productivity in Florida lakes. Canadian Journal of Fisheries and Aquatic Sciences 53: 875–883.CrossRefGoogle Scholar
  16. Hedges, J. I. & J. H. Stern, 1984. Carbon and nitrogen determination of carbonate-containing solids. Limnology and Oceanography 29: 657–663.CrossRefGoogle Scholar
  17. Hodell, D. A. & C. L. Schelske, 1998. Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnology and Oceanography 43: 200–214.Google Scholar
  18. Hollander, D. J. & M. A. Smith, 2001. Microbially mediated carbon cycling as a control on the δ13C of sedimentary carbon in eutrophic Lake Mendota (USA): new models for interpreting isotopic excursions in the sedimentary record. Geochimica et Cosmochimica Acta 65: 4321–4337.CrossRefGoogle Scholar
  19. Kastelec, D., 1999. Use of universal kriging for objective spatial interpolation of average yearly precipitation in Slovenia. Research Reports Biotechnical Faculty University of Ljubljana Agriculture 73: 301–314 (in Slovenian, with English abstract).Google Scholar
  20. Keeling, C. D., R. B. Bacastow, A. F. Carter, S. C. Piper, T. P. Whorf, M. Heimann, W. G. Mook & H. Roeloffzen, 1989. A three dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data. In Peterson, D. H. (ed.), Aspects of Climate Variability in the Pacific and Western Americas, Geophysical Monograph 55. American Geophysical Union, Washington, DC: 165–236.Google Scholar
  21. Lehmann, M. F., S. M. Bernasconi, A. Barbieri & J. A. McKenzie, 2002. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochimica et Cosmochimica Acta 66: 3573–3584.CrossRefGoogle Scholar
  22. Meyers, P. A., 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry 34: 261–289.CrossRefGoogle Scholar
  23. Meyers, P. A. & J. L. Teranes, 2001. Sediment organic matter. In Last, W. M. & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments. Vol. 2: Physical and Geochemical Methods. Kluwer Academic Publishers, Dordrecht: 239–269.Google Scholar
  24. Muri, G., 2004. Physico-chemical characteristics of lake water in 14 Slovenian mountain lakes. Acta Chimica Slovenica 51: 257–272.Google Scholar
  25. Muri, G. & A. Brancelj, 2002. Physical and chemical properties of lake water and ice cover. In Brancelj, A. (ed.), High-Mountain Lakes in the Eastern Part of the Julian Alps. ZRC Publishing, Ljubljana: 91–110.Google Scholar
  26. Muri, G. & T. Simčič, 2004. Respiratory activity in sediments in three mountain lakes of the Julian Alps and in subalpine Lake Bled (Slovenia): an effect of altitude and anthropic influence. Aquatic Microbial Ecology 34: 291–299.CrossRefGoogle Scholar
  27. Muri, G., S. G. Wakeham, T. K. Pease & J. Faganeli, 2004. Evaluation of lipid biomarkers as indicators of changes in organic matter delivery to sediments from Lake Planina, a remote mountain lake in NW Slovenia. Organic Geochemistry 35: 1083–1093.CrossRefGoogle Scholar
  28. Muri, G., S. G. Wakeham & N. L. Rose, 2006. Records of atmospheric delivery of pyrolysis-derived pollutants in recent mountain lake sediments of the Julian Alps (NW Slovenia). Environmental Pollution 139: 461–468.CrossRefPubMedGoogle Scholar
  29. Ogrinc, N., M. Žagar, J. Faganeli, T. Kanduč & P. Vreča, 2008. Methane formation in a remote mountain lake (Lake Planina, NW Slovenia). Geomicrobiology Journal 25: 346–357.CrossRefGoogle Scholar
  30. Rman, N. & M. Brenčič, 2008. Geology of Planina pri Jezeru and its environs (Slovenia). Geologija 51: 5–12.Google Scholar
  31. Simčič, T., 2005. The role of plankton, zoobenthos, and sediment in organic matter degradation in oligotrophic and eutrophic mountain lakes. Hydrobiologia 532: 69–79.CrossRefGoogle Scholar
  32. Simčič, T. & A. Brancelj, 2002. Intensity of mineralization processes in mountain lakes in NW Slovenia. Aquatic Ecology 36: 345–354.CrossRefGoogle Scholar
  33. Simčič, T., P. Vreča, G. Muri, S. Lojen & N. Ogrinc, 2002. Origins and mineralisation of organic matter in high-mountain lakes. In Brancelj, A. (ed.), High-Mountain Lakes in the Eastern Part of the Julian Alps. ZRC Publishing, Ljubljana: 179–198.Google Scholar
  34. Šiško, M. & G. Kosi, 2002. Algae. In Brancelj, A. (ed.), High-Mountain Lakes in the Eastern Part of the Julian Alps. ZRC Publishing, Ljubljana: 111–128.Google Scholar
  35. Šmuc, A. & B. Rožič, 2009. Tectonic geomorphology of the Triglav Lakes Valley (easternmost Southern Alps, NW Slovenia). Geomorphology 103: 597–604.CrossRefGoogle Scholar
  36. Stumm, W. & J. J. Morgan, 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Wiley, New York.Google Scholar
  37. Talbot, M. R., 2001. Nitrogen isotopes in paleolimnology. In Last, W. M. & J. P. Smol (eds.), Tracking Environmental Change Using Lake Sediments. Vol. 2: Physical and Geochemical Methods. Kluwer Academic Publishers, Dordrecht: 401–439.Google Scholar
  38. Twichell, S. C., P. A. Meyers & L. Diester-Haass, 2002. Significance of high C/N ratios in organic-carbon-rich Neogene sediments under the Benguela Current upwelling system. Organic Geochemistry 33: 715–722.CrossRefGoogle Scholar
  39. Urbanc-Berčič, O. & A. Gaberščik, 2002. Aquatic macrophytes. In Brancelj, A. (ed.), High-Mountain Lakes in the Eastern Part of the Julian Alps. ZRC Publishing, Ljubljana: 129–136.Google Scholar
  40. Verburg, P., 2007. The need to correct for the Suess effect in the application of δ13C in sediment of autotrophic Lake Tanganyika, as a productivity proxy in the Antropocene. Journal of Paleolimnology 37: 591–602.CrossRefGoogle Scholar
  41. Vreča, P., 2003. Carbon cycling at the sediment-water interface in a eutrophic mountain lake (Jezero na Planini pri Jezeru, Slovenia). Organic Geochemistry 34: 671–680.CrossRefGoogle Scholar
  42. Vreča, P. & G. Muri, 2002. Stable isotopic composition of sedimentary organic carbon and nitrogen as indicator of trophic state changes in high-mountain lakes in the Julian Alps. Geologija 45: 607–612 (in Slovenian, with English abstract).Google Scholar
  43. Vreča, P. & G. Muri, 2006. Changes in accumulation of organic matter and stable carbon and nitrogen isotopes in sediments of two Slovenian mountain lakes (Lake Ledvica and Lake Planina), induced by eutrophication changes. Limnology and Oceanography 51: 781–790.CrossRefGoogle Scholar
  44. Wolfe, A. P., J. S. Baron & R. J. Cornett, 2001. Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). Journal of Paleolimnology 25: 1–7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Jožef Stefan InstituteLjubljanaSlovenia
  2. 2.National Institute of BiologyLjubljanaSlovenia
  3. 3.Environmental Agency of the Republic of SloveniaLjubljanaSlovenia

Personalised recommendations