Skip to main content
Log in

Preferential accumulation of carotenoids rather than of mycosporine-like amino acids in copepods from high altitude Himalayan lakes

  • MOUNTAIN LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Zooplankton species have evolved several adaptive strategies to minimize damage caused by exposure to solar ultraviolet radiation, but the environmental conditions favoring one strategy or another are not yet fully understood. Here, I quantified the concentration of photoprotective compounds (carotenoids and mycosporine-like amino acids or MAAs) and assessed the photorepair activity (photolyase assay) in populations of the calanoid copepod, Arctodiaptomus jurisowitchi and the cladocerans, Daphnia himalaya and D. longispina, from five high altitude lakes located in the Himalayan Region (Khumbu Valley, Nepal) between 4890 and 5440 m above sea level. The concentration and diversity of MAAs were low in copepods, as well as in seston samples. Significant differences in the concentration of MAAs among the five copepod populations were largely explained (96%) by the lake depth refuge (i.e., the fraction of the water column to which 1% of the surface UVR at 320 nm penetrates). Concentrations of carotenoids (mostly free astaxanthin) in copepods were among the highest reported in the literature. Similar to MAAs, the carotenoid concentration was inversely related to the lake depth refuge. The lowest concentration of photoprotective compounds in copepods was observed in a turbid glacier lake, whereas the highest was found in a shallow water body dominated by a benthic mat of filamentous green algae. Except for the presence of melanin in D. himalaya, no other photoprotective compounds were found in cladocerans. The assay of photolyase activity in A. jurisowitchi and D. himalaya suggested the absence of a photorepair mechanism. The results of this study indicate that the copepod populations from this relatively pristine alpine region rely mainly on the accumulation of carotenoids to minimize damage by UV radiation, a pattern that strongly contrasts with what is known for copepods from other alpine lakes, for instance, in the Alps. I hypothesize that this difference is attributed to nitrogen limitation of the MAA synthesis in phytoplankton from remote Himalayan lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso, C., V. Rocco, J. P. Barriga, M. A. Battini & H. Zagarese, 2004. Surface avoidance by freshwater zooplankton: field evidence on the role of ultraviolet radiation. Limnology and Oceanography 49: 225–232.

    CAS  Google Scholar 

  • Banaszak, A. T. & P. J. Neale, 2001. UV sensitivity of photosynthesis in phytoplankton from an estuarine environment. Limnology and Oceanography 46: 592–603.

    Article  Google Scholar 

  • Bergström, A.-K. & M. Jansson, 2006. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Global Change Biology 12: 635–643.

    Article  Google Scholar 

  • Burns, C. W. & Z. Xu, 1990. Calanoid copepods feeding on algae and filamentous cyanobacteria: rates of ingestion, defaecation and effects on trichome length. Journal of Plankton Research 12: 201–213.

    Article  Google Scholar 

  • Byron, E. R., 1982. The adaptive significance of calanoid copepod pigmentation: a comparative and experimental analysis. Ecology 63: 1871–1886.

    Article  Google Scholar 

  • Carrier, W. L. & R. B. Setlow, 1971. The excision of pyrimidine dimers (the detection of dimers in small amounts). Methods in Enzymology 21: 230–237.

    Article  Google Scholar 

  • Connelly, S. J., R. E. Moeller, G. Sanchez & D. L. Mitchell, 2009. Temperature effects on survival and DNA repair in four freshwater cladoceran Daphnia species exposed to UV radiation. Photochemistry and Photobiology 85: 144–152.

    Article  CAS  PubMed  Google Scholar 

  • Cook, J. S. & T. E. Worthy, 1972. Deoxyribonucleic acid photoreactivating enzyme. A quantitative chemical assay and estimation of molecular weight of the yeast enzyme. Biochemistry 11: 388–393.

    Article  CAS  PubMed  Google Scholar 

  • Del Campo, J. A., J. Moreno, H. Rodríguez, M. A. Vargas, J. Rivas & M. G. Guerrero, 2000. Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). Journal of Biotechnology 76: 51–59.

    Article  CAS  PubMed  Google Scholar 

  • Gaillard, M., C. Juillet, F. Cézilly & M.-J. Perrot-Minnot, 2004. Carotenoids of two freshwater amphipod species (Gammarus pulex and G. roeseli) and their common acanthocephalan parasite Polymorphus minutus. Comparative Biochemistry and Physiology, Part B 139: 129–136.

    Article  CAS  Google Scholar 

  • Galloway, J. N., F. J. Dentener, D. G. Capone, E. W. Boyer, R. W. Howarth, S. P. Seitzinger, G. P. Asner, C. C. Cleveland, P. A. Green, E. A. Holland, D. M. Karl, A. F. Michaels, J. H. Porter, A. R. Townsend & C. J. Vörösmarty, 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70: 153–226.

    Article  CAS  Google Scholar 

  • García, P. E., A. P. Pérez, M. C. Diéguez, M. A. Ferraro & H. E. Zagarese, 2008. Dual control of the levels of photoprotective compounds by ultraviolet radiation and temperature in the freshwater copepod Boeckella antiqua. Journal of Plankton Research 30: 817–827.

    Article  CAS  Google Scholar 

  • Green, S. A. & N. V. Blough, 1994. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnology and Oceanography 39: 1903–1916.

    Article  CAS  Google Scholar 

  • Hairston, N. G., 1976. Photoprotection by carotenoid pigments in the copepod Diaptomus nevadensis. Proceedings of the National Academy of Sciences of the Unites States of America 73: 971–974.

    Article  CAS  Google Scholar 

  • Hairston, N. G., 1979. The adaptive significance of color polymorphism in two species of Diaptomus (Copepoda). Limnology and Oceanography 24: 15–37.

    Article  CAS  Google Scholar 

  • Hansson, L.-A., 2000. Induced pigmentation in zooplankton: a trade-off between threats from predation and ultraviolet radiation. Proceedings of the Royal Society London B 267: 2327–2331.

    Article  CAS  Google Scholar 

  • Hansson, L.-A., S. Hylander & R. Sommaruga, 2007. Escape from UV threats in zooplankton: a cocktail of behavior and protective pigmentation. Ecology 88: 1932–1939.

    Article  PubMed  Google Scholar 

  • Hargreaves, B. R., 2003. Water column optics and penetration of UVR. In Helbling, W. & H. Zagarese (eds), UV Effects in Aquatic Organisms and Ecosystems. Comprehensive Series in Photosciences, ESP. Royal Society of Chemistry, London: 61–105.

  • Hebert, P. D. N. & C. J. Emery, 1990. The adaptive significance of cuticular pigmentation in Daphnia. Functional Ecology 4: 703–710.

    Article  Google Scholar 

  • Heraud, P., J. Beardall, D. McNaughton & B. R. Wood, 2007. In vivo prediction of the nutrient status of individual microalgal cells using Raman microspectroscopy. FEMS Microbiology Letters 275: 24–30.

    Article  CAS  PubMed  Google Scholar 

  • Hessen, D. O. & K. Sørensen, 1990. Photoprotective pigmentation in alpine zooplankton populations. Aqua Fennica 20: 165–170.

    CAS  Google Scholar 

  • Hobæk, A. & H. G. Wolf, 1991. Ecological genetics of Norwegian Daphnia: II. Distribution of Daphnia longispina genotypes in relation to short-wave radiation and water colour. Hydrobiologia 225: 229–243.

    Article  Google Scholar 

  • Karentz, D., 2001. Chemical defences of marine organisms against solar radiation exposure: UV-absorbing mycosporine-like amino acids and scytonemin. In McClintock, J. & W. Baker (eds), Marine Chemical Ecology. CRC Press, Boca Raton: 481–520.

    Google Scholar 

  • Kessler, K., R. S. Lockwood, C. E. Williamson & J. E. Saros, 2008. Vertical distribution of zooplankton in subalpine and alpine lakes: ultraviolet radiation, fish predation, and the transparency-gradient hypothesis. Limnology and Oceanography 53: 2374–2382.

    Google Scholar 

  • Kinzie, R. A., A. T. Banaszak & M. P. Lesser, 1998. Effects of ultraviolet radiation on primary productivity in a high altitude tropical lake. Hydrobiologia 385: 23–32.

    Article  CAS  Google Scholar 

  • Korbee, N., P. Huovinen, F. L. Figueroa, J. Aguilera & U. Karsten, 2005. Availability of ammonium influences photosynthesis and the accumulation of mycosporine-like amino acids in two Porphyra species (Bangiales, Rhodophyta). Marine Biology 146: 645–654.

    Article  CAS  Google Scholar 

  • Laurion, I., M. Ventura, J. Catalan, R. Psenner & R. Sommaruga, 2000. Attenuation of ultraviolet radiation in mountain lakes: factors controlling the among- and within-lake variability. Limnology and Oceanography 45: 1274–1288.

    Article  Google Scholar 

  • Laurion, I., A. Lami & R. Sommaruga, 2002. Distribution of mycosporine-like amino acids and photoprotective carotenoids among freshwater phytoplankton assemblages. Aquatic Microbial Ecology 26: 283–294.

    Article  Google Scholar 

  • Leavitt, P. R., B. F. Cumming, J. P. Smol, M. Reasoner, R. Pienitz & D. A. Hodgson, 2003. Climatic control of ultraviolet radiation effects on lakes. Limnology and Oceanography 48: 2062–2069.

    Article  Google Scholar 

  • Leech, D. M. & C. E. Williamson, 2001. In situ exposure to UV radiation alters the depth distribution of Daphnia. Limnology and Oceanography 46: 416–420.

    Article  Google Scholar 

  • Lewis, W. M., 2002. Causes for the high frequency of nitrogen limitation in tropical lakes. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 28: 210–213.

    Google Scholar 

  • Litchman, E., P. J. Neale & A. T. Banaszak, 2002. Increased sensitivity to ultraviolet radiation in nitrogen-limited dinoflagellates: photoprotection and repair. Limnology and Oceanography 47: 86–94.

    Article  CAS  Google Scholar 

  • Löffler, H., 1968. Diaptomus (Arctodiaptomus) jurisowitchi nov. spec. aus dem Khumbu-Gebiet (Nepal). In Heelmich, W. (ed.), Khumbu Himal: Ergebnisse des Forschungsunternehmens Nepal Himalaya, Vol. 3. Universitätsverlag Wagner, Innsbruck: 9–16.

  • Löffler, H., 1969. High altitude lakes in Mt. Everest region. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 17: 373–385.

    Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.

    Article  CAS  Google Scholar 

  • Lotocka, M., E. Styczynska-Jurewicz & L. A. Bledzki, 2004. Changes in carotenoid composition in different developmental stages of copepods: Pseudocalanus acuspes Giesbrecht and Acartia spp. Journal of Plankton Research 26: 159–166.

    Article  CAS  Google Scholar 

  • Luecke, C. & W. J. O’Brien, 1981. Phototoxicity and fish predation: selective factors in color morphs of Heterocope. Limnology and Oceanography 26: 454–460.

    Article  Google Scholar 

  • Manca, M., D. Ruggiu, P. Panzani, A. Asioli, G. Mura & A. M. Nocentini, 1998. Report on a collection of aquatic organisms from high mountain lakes in the Khumbu Valley (Nepalese Himalayas). Memorie dell’ Istituto Italiano di Idrobiologia 57: 77–98.

    Google Scholar 

  • Manca, M., P. Martin, D. C. Peñalva-Arana & J. A. H. Benzie, 2006. Re-description of Daphnia (Ctenodaphnia) from lakes in the Khumbu Region, Nepalese Himalayas, with the erection of a new species, Daphnia himalaya, and a note on an intersex individual. Journal of Limnology 65: 132–140.

    Google Scholar 

  • Matsuno, T., 2001. Aquatic animal carotenoids. Fisheries Sciences 67: 771–783.

    Article  CAS  Google Scholar 

  • Miki, W., 1991. Biological functions and activities of animal carotenoids. Pure and Applied Chemistry 63: 141–146.

    Article  CAS  Google Scholar 

  • Mitchell, D. L. & D. Karentz, 1993. The induction and repair of DNA photodamage in the environment. In Young, A. R., L. O. Bjorn, J. Moan & W. Nultsch (eds), Environmental UV Photobiology. Plenum Press, New York: 345–377.

    Google Scholar 

  • Moeller, R. E., S. Gilroy, C. E. Williamson, G. Grad & R. Sommaruga, 2005. Dietary acquisition of photoprotective compounds (mycosporine-like amino acids, carotenoids) and acclimation to ultraviolet radiation in a freshwater copepod. Limnology and Oceanography 50: 427–439.

    Article  CAS  Google Scholar 

  • Niggli, H. J. & P. A. Cerutti, 1982. Nucleosomal distribution of thymine photodimers following far- and near-ultraviolet irradiation. Biochemical and Biophysical Research Communications 105: 1215–1223.

    Article  CAS  PubMed  Google Scholar 

  • Orosa, M., E. Torres, P. Fidalgo & J. Abalde, 2000. Production and analysis of secondary carotenoids in green algae. Journal of Applied Phycology 12: 553–556.

    Article  CAS  Google Scholar 

  • Paanackker, J. E. & G. M. Hallegraeff, 1978. A comparative study on the carotenoid pigmentation of the zooplankton of Lake Maarsseveen (Netherlands) and of Lac Pavin (Auvergne, France). 1. Chromatographic characterisation of carotenoid pigments. Comparative Biochemistry and Physiology 60B: 51–58.

    Google Scholar 

  • Persaud, A. D., R. E. Moeller, C. E. Williamson & C. W. Burns, 2007. Photoprotective compounds in weakly and strongly pigmented copepods and co-occurring cladoceran. Freshwater Biology 52: 2121–2133.

    Article  CAS  Google Scholar 

  • Ringelberg, J., A. L. Keyser & B. J. G. Flik, 1984. The mortality effect of ultraviolet radiation in a translucent and in a red morph of Acanthodiaptomus denticornis (Crustacea, Copepoda) and its possible ecological relevance. Hydrobiologia 112: 217–222.

    Article  Google Scholar 

  • Rocco, V. E., O. Oppezzo, R. Pizarro, R. Sommaruga, M. Ferraro & H. E. Zagarese, 2002. Ultraviolet damage and counteracting mechanisms in the freshwater copepod Boeckella poppei from the Antarctic Peninsula. Limnology and Oceanography 47: 829–836.

    Article  Google Scholar 

  • Rogora, M., J. Massaferro, A. Marchetto, G. Tartari & R. Mosello, 2008. The water chemistry of some shallow lakes in Northern Patagonia and their nitrogen status in comparison with remote lakes in different regions of the globe. Journal of Limnology 67: 75–86.

    Google Scholar 

  • Salguero, A., B. Morena, J. Vigara, J. M. Vega, C. Vilchez & R. León, 2003. Carotenoids as protective response against oxidative damage in Dunaliella bardawil. Biomolecular Engineering 20: 249–253.

    Article  CAS  PubMed  Google Scholar 

  • Shick, J. M. & W. C. Dunlap, 2002. Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annual Review of Physiology 64: 223–263.

    Article  CAS  PubMed  Google Scholar 

  • Sommaruga, R., 2001. The role of UV radiation in the ecology of alpine lakes. Journal of Photochemistry and Photobiology B: Biology 62: 35–42.

    Article  CAS  Google Scholar 

  • Sommaruga, R. & E. Casamayor, 2009. Bacterial ‘cosmopolitanism’ and importance of local environmental factors for community composition in remote high-altitude lakes. Freshwater Biology 54: 994–1005.

    Article  CAS  Google Scholar 

  • Sommaruga, R. & F. Garcia-Pichel, 1999. UV-absorbing mycosporine-like compounds in planktonic and benthic organisms from a high-mountain lake. Archiv für Hydrobiologie 144: 255–269.

    CAS  Google Scholar 

  • Tartari, G. A., P. Panzani, L. Adreani, A. Ferrero & C. De Vito, 1998. Lake cadastre of Khumbu Himal Region: geographical-geological-limnological data base. Memorie dell’ Istituto Italiano di Idrobiologia 7: 151–235.

    Google Scholar 

  • Tartarotti, B. & R. Sommaruga, 2002. Effect of different methanol concentrations and temperatures on the extraction of mycosporine-like amino acids (MAAs) in algae and zooplankton. Archiv für Hydrobiologie 154: 691–703.

    CAS  Google Scholar 

  • Tartarotti, B. & R. Sommaruga, 2006. Seasonal and ontogenetic changes of mycosporine-like amino acids in planktonic organisms from an alpine lake. Limnology and Oceanography 51: 1530–1541.

    Article  CAS  Google Scholar 

  • Tartarotti, B., I. Laurion & R. Sommaruga, 2001. Large variability in the concentration of mycosporine-like amino acids among zooplankton from lakes located across an altitude gradient. Limnology and Oceanography 46: 1546–1552.

    Article  CAS  Google Scholar 

  • Tartarotti, B., G. Baffico, P. Temporetti & H. E. Zagarese, 2004. Mycosporine-like amino acids in planktonic organisms living under different UV exposure conditions in Patagonian lakes. Journal of Plankton Research 26: 753–762.

    Article  CAS  Google Scholar 

  • Turpin, D. H., 1991. Effects of inorganic N availability on algal photosynthesis and carbon metabolism. Journal of Phycology 27: 14–20.

    Article  CAS  Google Scholar 

  • Villafañe, V. E., M. Andrade, A. V. Lairana, F. Zaratti & E. W. Helbling, 1999. Inhibition of phytoplankton photosynthesis by solar ultraviolet radiation: studies in Lake Titicaca, Bolivia. Freshwater Biology 42: 215–224.

    Article  Google Scholar 

  • Vincent, W. F., W. Wurtsbaugh, C. L. Vincent & P. J. Richerson, 1984. Seasonal dynamics of nutrient limitation in a tropical high-altitude lake (Lake Titicaca, Peru-Bolivia): application of physiological bioassays. Limnology and Oceanography 29: 540–552.

    Article  CAS  Google Scholar 

  • Wade, N., K. C. Goulter, K. J. Wilson, M. R. Hall & B. M. Degnan, 2005. Esterified astaxanthin levels in lobster epithelia correlate with shell colour intensity: potential role in crustacean shell colour formation. Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology 141: 307–313.

    Article  CAS  Google Scholar 

  • Williamson, C. E., G. Grad, H. J. De Lange, S. Gilroy & D. M. Karapelou, 2002. Temperature-dependent ultraviolet responses in zooplankton: implications of climate change. Limnology and Oceanography 47: 1844–1848.

    Article  Google Scholar 

  • Wolfe, A. P., A. C. Van Gorp & J. S. Baron, 2003. Recent ecological and biogeochemical changes in alpine lakes of Rocky Mountain National Park (Colorado, USA): a response to anthropogenic nitrogen deposition. Geobiology 1: 153–168.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank S. Musazzi, A. Lami, and G. Tartari for the help during field work; M. Gaillard for the analysis of carotenoids; O. Oppezzo for photolyase measurements; M. Manca for data on dry weight of zooplankton; E. Rott for the identification of filamentous green algae from Lake 14; and H. Zagarese, R. Psenner, and B. Tartarotti for their useful comments on an earlier version of this manuscript. The logistics for the field work and the research at the Pyramid Research Laboratory was supported by a project from the Committee on High Altitude Scientific and Technological Research (Ev-K²-CNR) in collaboration with the Nepal Academy of Science and Technology, and I acknowledge with thanks the contributions from the Italian National Research Council and the Italian Ministry of Foreign Affairs. Funds for the analyses were provided by the University of Innsbruck through the Daniel Swarovski Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Sommaruga.

Additional information

Guest editors: Hilde Eggermont, Martin Kernan & Koen Martens / Global change impacts on mountain lakes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommaruga, R. Preferential accumulation of carotenoids rather than of mycosporine-like amino acids in copepods from high altitude Himalayan lakes. Hydrobiologia 648, 143–156 (2010). https://doi.org/10.1007/s10750-010-0141-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0141-y

Keywords

Navigation