Limnological and ecological sensitivity of Rwenzori mountain lakes to climate warming

Abstract

An increasing number of studies forecast that anthropogenic climate change poses serious consequences for the biodiversity and ecosystem functioning of high-elevation mountain lakes, through a series of both direct and indirect effects. The impacts of future climate warming on alpine ecosystems are of particular concern, given that warming is expected to be most pronounced at high elevations around the globe. Here, we evaluate the limnological and ecological sensitivity of high-elevation lakes in the Rwenzori Mountains (Uganda-D. R. Congo) to climate change. This is done by comparing the species assemblages of larval chironomid remains deposited recently in lake sediments with those deposited at the base of short cores (dated to within or shortly after the Little Ice Age) in 16 lakes. Chironomid-based reconstructions of mean annual air temperature (MATemp) are made using a variety of inference models (with transfer functions based on weighted averaging, weighted-averaging partial least squares, and a weighted modern analogue technique), and two different calibration data sets, one covering the full regional temperature gradient and one comprising only high-elevation Rwenzori lakes and ponds. The reconstructed historical temperature change ranges between a cooling of −2.03°C and a warming of +3.22°C (with n = 16 lakes × 3 models × 2 calibration data sets). However, excluding the atypical mid-elevation lake Mahoma (2,990 m altitude), we find a three-to-one ratio of cases of inferred warming against inferred cooling, and of the 24 Δ MATemp values exceeding 0.60°C, 23 are positive and only one is negative. Chironomid-inferred temperature changes mostly fall within the error range of the regional temperature inference models. A generalized linear mixed model analysis of the combined result from all lakes (except Mahoma) nevertheless indicates significantly warmer MATemp (on average +0.38 ± 0.11°C) at present compared to between ~85 and ~645 years ago. Inferred temperature changes are independent of whether lakes are located in glaciated or non-glaciated catchments, and of the age of the core base, suggesting that at least part of the signal is due to relatively recent, anthropogenic warming. The direction of faunal change at the lakes in relation to established species–environment relationships suggests that part of the observed shifts in species composition reflect lake-specific evolution in habitat features other than temperature, such as nutrients, pH or oxygen regime, which in our present calibration data set co-vary with temperature to a greater or lesser extent. The fairly uniform and marked historical warming trend in Rwenzori lakes documented by this study highlights their ecological vulnerability and their value as early warning systems for detecting the limnological and ecological effects of global warming.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bajracharya, B., A. B. Shrestha & L. Rajbhandari, 2007. Glacial lake outburst floods in the Sagarmatha region. Hazard assessment using GIS and hydrodynamic modeling. Mountain Research and Development 27: 336–344.

    Article  Google Scholar 

  2. Barker, P. A., F. A. Street-Perrott, M. J. Leng, P. B. Greenwood, D. L. Swain, R. A. Perrott, R. J. Telford & K. J. Ficken, 2001. A 14, 000 year oxygen isotope record from diatom silica in two Alpine lakes on Mt Kenya. Science 292: 2307–2310.

    Article  CAS  PubMed  Google Scholar 

  3. Battarbee, R. W., R. Thompson, J. Catalan, J. A. Grytnes & H. J. B. Birks, 2002. Climate variability and ecosystem dynamics of remote alpine and arctic lakes: the MOLAR project. Journal of Paleolimnology 28: 1–6.

    Article  Google Scholar 

  4. Bergstrøm, F., 1955. The British Rwenzori expedition 1952. Journal of Glaciology 2: 468–476.

    Google Scholar 

  5. Bigler, C., O. Heiri, R. Krskova, A. F. Lotter & M. Sturm, 2006. Distribution of diatoms, chironomids and cladocera in surface sediments of thirty mountain lakes in south-eastern Switzerland. Aquatic Science 68: 154–171.

    Article  Google Scholar 

  6. Birks, H. J. B., 1998. Numerical tools in palaeolimnology – progress, potentialities and problems. Journal of Paleolimnology 20: 307–332.

    Article  Google Scholar 

  7. Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. Ter Braak, 1990. Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society of London Series B-Biology 327: 263–278.

    Article  Google Scholar 

  8. Bonnefille, R. & M. Umer, 1994. Pollen inferred climatic fluctuations in Ethiopia during the last 3000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 109: 331–343.

    Article  Google Scholar 

  9. Both, C. & M. E. Visser, 2005. The effect of climate change on the correlation between avian life-history traits. Global Change Biology 11: 1606–1613.

    Article  Google Scholar 

  10. Bray, J. R. & J. T. Curtis, 1957. An ordination of upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349.

    Article  Google Scholar 

  11. Brooks, S., 2006. Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region. Quaternary Science Reviews 25: 1894–1910.

    Article  Google Scholar 

  12. Callisto, M., P. Moreno, M. Goulart, A. Medeiros, M. Petrucio, M. Moretti, N. Mayrink & C. A. Rosa, 2002. The assessment of aquatic biodiversity along an altitudinal gradient at the Serra do Cigo (south-eastern Brazil). Verhandlungen des Internationalen Verein Limnologie 28: 1–4.

    Google Scholar 

  13. Clarke, K. R. & R. M. Warwick, 1994. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Plymouth Marine Laboratory, Plymouth, UK.

    Google Scholar 

  14. Cüllen, N. J., T. Mölg, G. Kaser, K. Hussein, K. Steffen & D. R. Hardy, 2006. Kilimanjaro glaciers: recent areal extent from satellite data and new interpretation of observed 20th century retreat of glaciers. Geophysical Research Letters 33: L16502.

    Article  Google Scholar 

  15. Cumming, B. F., J. P. Smol, J. C. Kingston, D. F. Charles, H. J. B. Birks, K. E. Camburn, S. S. Dixit, A. J. Uutala & A. R. Selle, 1992. How much acidification has occurred in Adirondack region lakes (New York, USA) since preindustrial times? Canadian Journal of Fisheries and Aquatic Sciences 49: 128–141.

    Article  Google Scholar 

  16. Danks, H. V., 1971. Overwintering of some north-temperate and arctic Chironomidae. 11. Chironomid biology. Canadian Entomologist 103: 1875–1910.

    Article  Google Scholar 

  17. De Heinzelin, J., 1953. Les stades de recession and periglacial phenomena in the Rwenzori Range. Journal of Glaciology 2: 137–140.

    Google Scholar 

  18. Diaz, H. F. & R. S. Bradley, 1997. Temperature variations during the last century at high elevation sites. Climatic Change 36: 253–279.

    Article  Google Scholar 

  19. Diaz, H. F., M. Grosjean & L. Graumlich, 2003. Climate variability and change in high elevation regions: past, present and future. Climatic Change 59: 1–4.

    Article  Google Scholar 

  20. Dixit, S. S., A. S. Dixit & J. P. Smol, 1992. Assessment of changes in lake water chemistry in Sudbury area lakes since preindustrial times. Canadian Journal of Fisheries and Aquatic Sciences 49: 8–16.

    Article  CAS  Google Scholar 

  21. Eggermont, H. & D. Verschuren, 2004a. Sub-fossil Chironomidae from East Africa. 1. Tanypodinae and Orthocladiinae. Journal of Paleolimnology 32: 383–412.

    Article  Google Scholar 

  22. Eggermont, H. & D. Verschuren, 2004b. Sub-fossil Chironomidae from East Africa. 2. Chironominae (Chironomini and Tanytarsini). Journal of Paleolimnology 32: 413–455.

    Article  Google Scholar 

  23. Eggermont, H. & D. Verschuren, 2007. Taxonomy and diversity of Afro-alpine Chironomidae (Insecta: Diptera) on Mount Kenya and the Rwenzori Mountains, East Africa. Journal of Biogeography 34: 69–89.

    Article  Google Scholar 

  24. Eggermont, H., J. M. Russell, G. Schettler, K. Van Damme, I. Bessems & D. Verschuren, 2007. Physical and chemical limnology of alpine lakes and pools in the Rwenzori Mountains (Uganda–D. R. Congo). Hydrobiologia 592: 151–173.

    Article  CAS  Google Scholar 

  25. Eggermont, H., O. Heiri, J. Russell, M. Vuille, L. Audenaert & D. Verschuren, 2009. Paleotemperature reconstruction in tropical Africa using fossil Chironomidae (Insecta: Diptera). Journal of Paleolimnology. doi:10.1007/s10933-009-9339-2.

  26. Fries, R. E. & T. C. E. Fries, 1948. Phytogeographical researches on Mount Kenya and Mount Aberdara, British East Africa. Kundliga Svenska Vetenskapsakademiens Handlingar 25: 1–54.

    Google Scholar 

  27. Gajewski, K., G. Bouchard, S. E. Wilson, J. Kurek & L. C. Cwynar, 2005. Distribution of Chironomid (Insecta: Diptera) head capsules in recent sediments of Canadian Arctic lakes. Hydrobiologia 549: 131–143.

    Article  Google Scholar 

  28. Gasse, F., 2002. Kilimanjaro’s secrets revealed. Science 298: 548–549.

    Article  CAS  PubMed  Google Scholar 

  29. Gauch, H. G., 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, Cambridge.

    Google Scholar 

  30. Granados, I. & M. Toro, 2000. Recent warming in a high mountain lake (Laguna Cimera, Central Spain) inferred by means of fossil chironomids. Journal of Limnology 59: 101–119.

    Google Scholar 

  31. Hall, R. & J. P. Smol, 1996. Paleolimnological assessment of longterm water quality changes in south-central Ontario lakes affected by cottage development and acidification. Canadian Journal of Fisheries and Aquatic Sciences 53: 1–17.

    Article  CAS  Google Scholar 

  32. Hart, S. C., 2006. Potential impacts of climate change on nitrogen transformations and greenhouse gas fluxes in forest: a soil transfer study. Global Change Biology 12: 1032–1046.

    Article  Google Scholar 

  33. Hastenrath, S., 2001. Variation of East African climate during the past two centuries. Climatic change 50: 209–217.

    Article  Google Scholar 

  34. Hastenrath, S. L. & P. D. Kruss, 1992. The dramatic retreat of Mount Kenya’s glaciers between 1963 and 1987: greenhouse forcing. Annals of Glaciology 16: 127–133.

    Google Scholar 

  35. Hedberg, O., 1951. Vegetation belts of the East African mountains. Svensk Botanisk Tidskrift 45: 140–202.

    Google Scholar 

  36. Heegaard, E., A. F. Lotter & H. J. B. Birks, 2006. Aquatic biota and detection of climate change: are there consistent aquatic ecotones? Journal of Paleolimnology 35: 507–518.

    Article  Google Scholar 

  37. Heiri, O. & A. F. Lotter, 2001. Effect of low count sums on quantitative environmental reconstructions: an example using sub-fossil Chironomids. Journal of Paleolimnology 26: 343–350.

    Article  Google Scholar 

  38. Heiri, O. & A. F. Lotter, 2003. 9000 years of chironomid assemblage dynamics in an Alpine lake: long-term trends, sensitivity to disturbance and resilience of the fauna. Journal of Paleolimnology 30: 273–289.

    Article  Google Scholar 

  39. Heiri, O. & A. F. Lotter, 2005. Summer temperature reconstruction in the Alps based on fossil assemblages of aquatic organisms: a review. Boreas 34: 506–516.

    Article  Google Scholar 

  40. Heiri, O., H. J. B. Birks, S. J. Brooks, G. Velle & E. Willassen, 2003. Effects of within lake variability of fossil assemblages on quantitative chironomid-inferred temperature construction. Palaeogeography, Palaeoclimatology, Palaeoecology 199: 95–106.

    Article  Google Scholar 

  41. Jiguet, F., A. S. Gadot, R. Julliard, S. E. Newson & D. Couvet, 2007. Climate envelope, life history traits and the resilience of birds facing global change. Global Change Biology 13: 1672–1684.

    Article  Google Scholar 

  42. Juggins, S., 2003. C2 user Guide, Software for Ecological and Palaeoecological Data Analysis and Visualisation. University of Newcastle, Newcastle upon Tyne, UK: 69.

    Google Scholar 

  43. Kamenik, C., R. Schmidt, G. Kum & R. Psenner, 2001. The influence of catchment characteristics on the water chemistry of mountain lakes. Arctic, Antarctic and Alpine Research 33: 404–409.

    Article  Google Scholar 

  44. Kaser, G. & H. Osmaston, 2002. Tropical Glaciers. Cambridge University Press, Cambridge.

    Google Scholar 

  45. Larocque, I., R. I. Hall & E. Grahn, 2001. Chironomids as indicators of climate change: a 100-lake training set from a subarctic region of Northern Sweden (Lapland). Journal of Paleolimnology 26: 307–322.

    Article  Google Scholar 

  46. Larocque, I., R. Pienitz & N. Rolland, 2006. Factors influencing the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Quebec, Canada. Canadian Journal of Fisheries and Aquatic Sciences 63: 1286–1297.

    Article  Google Scholar 

  47. Liamberti, G. A. & J. W. Morre, 1984. Aquatic insects as primary consumers. In Resh, V. H. & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Blackwell, New York: 164–195.

    Google Scholar 

  48. Littell, R. C., G. A. Milliken, W. W. Stroup, R. D. Wolfinger & O. Schabenberger, 2006. SAS® for Mixed Models, 2nd ed. SAS Institute Inc, Cary, NC.

    Google Scholar 

  49. Livingstone, D. A., 1967. Postglacial vegetation of the Rwenzori Mountains in Equatorial Africa. Ecological Monographs 37: 26–51.

    Article  Google Scholar 

  50. Livingstone, D. M., A. F. Lotter & I. R. Walker, 1999. The decrease in summer surface water temperature with altitude in Swiss alpine lakes: a comparison with air temperature lapse rate. Arctic, Antarctic and Alpine Research 31: 341–352.

    Article  Google Scholar 

  51. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid and chrysophyte cyst assemblages as indicators for the reconstruction of past environmental conditions in the Alps II: nutrients. Journal of Paleolimnology 19: 443–463.

    Article  Google Scholar 

  52. Lotter, A. F., I. R. Walker, S. J. Brooks & W. Hofmann, 1999. An intercontinental comparison of chironomid palaeotemperature inference models: Europe versus North America. Quaternary Science Reviews 18: 717–735.

    Article  Google Scholar 

  53. Lotter, A. F., H. J. B. Birks, U. Eicher, W. Hofmann, J. Schwander & L. Wick, 2000. Younger Dryas and Allerød summer temperatures at Gerzensee (Switzerland) inferred from fossil pollen and cladoceran assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 159: 349–361.

    Article  Google Scholar 

  54. Mann, M. E., Z. H. Zhang, M. K. Hughes, R. S. Bradley, S. K. Miller, S. Rutherford & F. Ni, 2008. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proceedings of the National Academy of Sciences 105: 13252–13257.

    Article  CAS  Google Scholar 

  55. McGarrigle, M. L., 1980. The distribution of chironomid communities and controlling sediment parameters in L. Derravaragh, Ireland. In Murray, D. A. (ed.), Chironomidae: Ecology, Systematics, Cytology, Physiology. Pergamon Press, Oxford: 275–282.

    Google Scholar 

  56. Mölg, T., H. Rott, G. Kaser, A. Fischer, & N. J. Cullen, 2006. Comment on “Recent glacial recession in the Rwenzori Mountains of East Africa due to rising air temperature” by Richard G. Taylor, Lucinda Mileham, Callist Tindimugaya, Abushen Majugu, Andrew Muwanga, and Bob Nakileza. Geophysical Research Letters 33: L20404.

  57. New, M. G., D. Lister, M. Hulme & I. Makin, 2002. A high-resolution data set of surface water climate for terrestrial cloud areas. Climate Research 21: 1–25.

    Article  Google Scholar 

  58. O’Reilly, C. M., S. R. Alin, P.-D. Plisnier, A. Cohen & B. A. McKee, 2003. Climate change decreases aquatic ecosystem productivity in Lake Tanganyika. Nature 424: 766–768.

    Article  PubMed  CAS  Google Scholar 

  59. Osmaston, H. A., 1989. Glaciers, glaciations and equilibrium line altitudes on the Rwenzori mountains. In Mahaney, W. C. (ed.), Quaternary and Environmental Research on the East African Mountains. Balkema, Rotterdam: 7–30.

    Google Scholar 

  60. Patz, J. A., M. Hulme, C. Rosenzweig, T. D. Mitchell, R. A. Goldberg, A. K. Githeko, S. Leke, A. J. McMichael & D. Le Sueur, 2002. Regional warming and malaria resurgence. Nature 420: 627–628.

    Article  CAS  PubMed  Google Scholar 

  61. Pinder, L. V. C., 1986. Biology of freshwater Chironomidae. Annual Review of Entomology 31: 1–23.

    Google Scholar 

  62. Porinchu, D. F., A. P. Potito, G. M. Mac Donald & A. M. Bloom, 2007. Subfossil chironomids as indicators of recent climate change in Sierra Nevada, California lakes. Arctic, Antarctic and Alpine Research 39: 286–296.

    Article  Google Scholar 

  63. Psenner, R. & R. Schmidt, 1992. Climate-driven pH control of remote alpine lakes and effects of arid deposition. Nature 356: 781–783.

    Article  CAS  Google Scholar 

  64. Quincey, D. J., S. D. Richardson, A. Luckman, R. M. Lucas, J. M. Reynolds, M. J. Hambrey & N. S. Glasser, 2007. Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Global and Planetary Change 56: 137–152.

    Article  Google Scholar 

  65. Quinlan, R. & J. P. Smol, 2001. Setting the minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. Journal of Paleolimnology 26: 327–342.

    Article  Google Scholar 

  66. Rundel, D. W., 1994. Tropical alpine climates. In Rundel, P. W., A. P. Smith & F. C. Meinzer (eds), Tropical Alpine Environments: Plant Form and Function. Cambridge University Press, Cambridge: 21–44.

    Google Scholar 

  67. Russell, J. & T. C. Johnson, 2007. Little Ice age drought in equatorial Africa: intertropical Convergence Zone migrations and El Nino-Southern Oscillation variability. Geology 35: 21–24.

    Article  CAS  Google Scholar 

  68. Russell, J. M., D. Verschuren & H. Eggermont, 2007. Spatial complexity during the Little Ice Age in tropical East Africa: sedimentary records from contrasting crater lake basins in western Uganda. The Holocene 17: 183–193.

    Article  Google Scholar 

  69. Russell, J., H. Eggermont, R. Taylor & D. Verschuren, 2009. Paleolimnological records of recent glacier recession in the Rwenzori Mts, Uganda–D. R. Congo. Journal of Paleolimnology 41: 253–271.

    Article  Google Scholar 

  70. SAS Inc., 2004. SAS Online Doc 9.1.3. SAS Institute Inc, Cary, NC.

    Google Scholar 

  71. Satterthwaite, F. E., 1946. An approximate distribution of estimates of variance components. Biometrics Bulletin 2: 110–114.

    Article  CAS  PubMed  Google Scholar 

  72. Schiefer, E. & R. Gilbert, 2008. Proglacial sediment trapping in recently formed Silt Lake, Upper Lillooet Valley, Coast Mountains, British Columbia. Earth Surface Processes and Landforms 33: 1542–1556.

    Article  Google Scholar 

  73. Scully, N. M., 1998. Les effects de la radiation ultraviolette et des facteurs hydrodynamique sur les processus photobiochimiques des écosystèmes aquatique. Ph.D., Université Laval, Québec.

  74. Skjelkvale, B. L. & R. F. Wright, 1998. Mountain lakes: sensitivity to acid deposition and global climate change. Ambio 27: 280–286.

    Google Scholar 

  75. Smol, J. P., 1992. Paleolimnology: an important tool for effective ecosystem management. Journal of Aquatic Ecosystem Health 1: 49–58.

    Article  Google Scholar 

  76. Smol, J. P., 2002. Pollution of Lakes and Rivers: A Paleoenvironmental Perspective. Arnold, London: 280.

    Google Scholar 

  77. Sommarugawograth, S., K. A. Koinig, R. Schmidt, R. Sommaruga, R. Tessadri & R. Psenner, 1997. Temperature effects on the acidity of remote alpine lakes. Nature 387: 64–67.

    Article  CAS  Google Scholar 

  78. Søndergaard, M., 1997. Bacteria and dissolved organic carbon in lakes. In Sand-Jensen, K. & O. Petersen (eds), Freshwater Biology: Priorities and Development in Danish Research. Gad Publisher, Copenhagen: 138–161.

    Google Scholar 

  79. Taylor, R. G., L. Mileham, C. Tindimugaya, A. Majugu, A. Muwanga & B. Nakileza, 2006. Recent glacial recession in the Rwenzori Mountains of East Africa due to rising air temperature. Geophysical Research Letters 33: GRL025962.

  80. Ter Braak, C. J. F. & P. Smilauer, 1998. CANOCO Reference Manual and User’s Guide to CANOCO for Windows. Center for Biometry, Wageningen: 351 pp.

    Google Scholar 

  81. Thompson, L. G., E. Mosley-Thompson, M. E. Davis, K. A. Henderson, H. H. Brecher, V. S. Zagorodnov, et al., 2002. Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa. Science 298: 589–593.

    Article  CAS  PubMed  Google Scholar 

  82. Thompson, R., C. Kamenik & R. Schmidt, 2005. Ultra-sensitive alpine lakes and climate change. Journal of Limnology 64: 139–152.

    Google Scholar 

  83. Velle, G., S. J. Brooks, H. J. B. Birks & E. Willassen, 2005. Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in Southern Scandinavia. Quaternary Science Reviews 24: 1429–1462.

    Article  Google Scholar 

  84. Verschuren, D., 1993. Lake-based climate reconstruction in Africa: progress and challenges. Hydrobiologia 500: 315–330.

    Article  Google Scholar 

  85. Verschuren, D., 2004. Decadal to century-scale climate variability in tropical Africa during the past 2000 years. In Battarbee, R. W., F. Gasse & C. Stickley (eds), Past Climate Variability Through Europe and Africa. Kluwer, Dordrecht, The Netherlands: 139–158.

    Google Scholar 

  86. Walker, I. R., 1987. Chironomidae (Diptera) in paleolimnology. Quaternary Science Reviews 6: 29–40.

    Article  Google Scholar 

  87. Walker, I. R., 2001. Midges: Chironomidae and related Diptera. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change using Lake Sediments. Zoological Indicators. Kluwer, Dordrecht: 43–66.

    Google Scholar 

  88. Walker, I. R. & L. C. Cwynar, 2006. Midges and palaeotemperature reconstruction: the North American Experience. Quaternary Science Reviews 25: 1911–1925.

    Article  Google Scholar 

  89. Walker, I. R. & R. W. Mathewes, 1989. Much ado about dead diptera. Hydrobiologia 2: 19–22.

    Google Scholar 

  90. Wetzel, R. G., 2001. Limnology, 3rd ed. Academic Press, London, UK.

    Google Scholar 

  91. Wiederholm, T., 1984. Responses of aquatic insects to environmental pollution. In Resh, V. H. & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger, New York: 508–557.

    Google Scholar 

  92. Winnell, M. H. & D. S. White, 1985. Trophic status of southeastern Michigan based on the Chironomidae (Diptera). Journal of Great Lakes Research 11: 540–548.

    Article  Google Scholar 

  93. Wright, R. F. & D. W. Schindler, 1995. Interactions of acid rain and global changes: effects on terrestrial and aquatic ecosystems. Water, Air and Soil Pollution 85: 359–364.

    Article  Google Scholar 

  94. Zaehle, S., A. Bondeau, T. R. Carter, W. Cramer, M. Erhard, I. C. Prentice, I. Reginster, M. D. A. Rousevell, S. Sitch, B. Smith, P. C. Smith & M. Sykes, 2007. Projected changes in terrestrial carbon storage in Europe under climate and land-use change, 1990–2100. Ecosystems 10: 380–401.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the Fund for Scientific Research (Flanders, Belgium; project G0528.07), the Institute for the Advancement of Scientific-Technological Research in Industry (Flanders, Belgium), the US National Science Foundation (grant 7999-06), the Salomon fund (Brown University), the Leopold-III Fund for Nature Exploration and Conservation (Belgium) and the Stichting ter Bevordering van het Wetenschappelijk Onderzoek in Afrika. Fieldwork was conducted under Uganda NCST research clearances EC540 and NS21, and Uganda Wildlife Authority permit UWA/TBDP/RES/50. We thank all people involved in the fieldwork, and the Uganda Wildlife Authority for permission to sample lakes in national parks. We further thank Petr Smilauer and John Birks for suggestions on the statistics. H. E. is a postdoctoral fellow with the Fund of Scientific Research (Flanders, Belgium).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hilde Eggermont.

Additional information

Guest editors: Hilde Eggermont, Martin Kernan & Koen Martens / Global change impacts on mountain lakes

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eggermont, H., Verschuren, D., Audenaert, L. et al. Limnological and ecological sensitivity of Rwenzori mountain lakes to climate warming. Hydrobiologia 648, 123–142 (2010). https://doi.org/10.1007/s10750-010-0140-z

Download citation

Keywords

  • Climate change
  • Chironomidae
  • Glacier retreat
  • Mountain lakes
  • Rwenzori
  • Temperature reconstruction
  • Top–bottom approach