Skip to main content
Log in

Changes in attachment strength and aggregation of zebra mussel, Dreissena polymorpha in the presence of potential fish predators of various species and size

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We studied the attachment strength and aggregation behaviour of Dreissena polymorpha in the presence of large roach Rutilus rutilus (>180 mm total length) (efficient molluscivore), small roach (<110 mm) (unable to feed on zebra mussels) and perch Perca fluviatilis (not feeding on mussels). The intention was to check whether small (<10 mm) and large (>10 mm) mussels would respond specifically to fish capable of consuming them (i.e. large roach). After 1 day of exposure, we found no significant differences in mussel attachment strength. After 6 days in the presence of large roach, mussels were attached more strongly than in the other treatments. After a 1-day exposure to all kinds of fish, mussels were more aggregated than in the control treatment. After 6 days, the largest percentage of aggregated mussels was found in the presence of large roach, while the aggregation levels in the other treatments were lower and did not differ from one another. Perhaps, an initial response was a non-specific reaction to the presence of any fish, while a specific response to large roach appeared later. Thus, zebra mussels were able to recognize their potential predators. The observed behaviour of mussels may enhance their resistance to molluscivores in the field by limiting the access of predators to their potential prey (due to the increased aggregation of prey) and by increasing predator handling costs (due to the stronger attachment of prey).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ackerman, J. D., B. Sim, S. J. Nichols & R. Claudi, 1994. A review of the early life history of zebra mussels (Dreissena polymorpha) comparisons with marine bivalves. Canadian Journal of Zoology 72: 1169–1179.

    Article  Google Scholar 

  • Ackerman, J. D., C. M. Cottrell, C. R. Ethier, D. G. Allen & J. K. Spelt, 1995. A wall jet to measure the attachment strength of zebra mussel. Canadian Journal of Fisheries and Aquatic Sciences 52: 126–135.

    Article  Google Scholar 

  • Bartsch, M. R., L. A. Bartsch & S. Gutreuter, 2005. Strong effects of predation by fishes on an invasive macroinvertebrate in a large floodplain river. Journal of the North American Benthological Society 24: 168–177.

    Article  Google Scholar 

  • Baumgärtner, D., A.-D. Jungbluth, U. Koch & E. von Elert, 2002. Effects of infochemicals on microhabitat choice by the freshwater amphipod Gammarus roeseli. Archiv für Hydrobiologie 155: 353–367.

    Google Scholar 

  • Bell, E. C. & J. M. Gosline, 1997. Strategies for life in flow: tenacity, morphometry, and probability of dislodgment of two Mytilus species. Marine Ecology – Progress Series 159: 197–208.

    Article  Google Scholar 

  • Brylińska, M., 2000. Ryby słodkowodne Polski. (Freshwater fishes of Poland). PWN, Warsaw: 521 pp (in Polish).

  • Burks, R. L., N. C. Tuchman, C. A. Call & J. E. Marsden, 2002. Colonial aggregates: effects of spatial position on zebra mussel responses to vertical gradients in interstitial water quality. Journal of the North American Benthological Society 21: 64–75.

    Article  Google Scholar 

  • Chase, R. & R. F. McMahon, 1995. Starvation tolerance of zebra mussels, Dreissena polymorpha. Proceedings of the Fifth International Zebra Mussel and Other Aquatic Nuisance Organisms Conference, Toronto, Canada, February 1995: 31–38.

  • Chase, M. E. & R. C. Bailey, 1999. The ecology of the zebra mussel (Dreissena polymorpha) in the Lower Great Lakes of North America: I. Population dynamics and growth. Journal of Great Lakes Research 25: 107–121.

    Article  Google Scholar 

  • Cheung, S. G., P. Y. Tong, K. M. Yip & P. K. S. Shin, 2004. Chemical cues from predators and damaged conspecifics affect byssus production in the green-lipped mussel Perna viridis. Marine and Freshwater Behaviour and Physiology 37: 127–135.

    Article  CAS  Google Scholar 

  • Cheung, S. G., K. C. Luk & P. K. S. Shin, 2006. Predator-labeling effect on byssus production in marine mussels Perna viridis (L.) and Brachidontes variabilis (Krauss). Journal of Chemical Ecology 32: 1501–1512.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, M. & R. F. McMahon, 1996. Effects of temperature on byssal thread production by the freshwater mussel, Dreissena polymorpha (Pallas). American Malacological Bulletin 13: 105–110.

    Google Scholar 

  • Côté, I. M. & E. Jelnikar, 1999. Predator-induced clumping behaviour in mussels (Mytilus edulis Linnaeus). Journal of Experimental Marine Biology and Ecology 235: 201–211.

    Article  Google Scholar 

  • Craig, J. F., 1987. The biology of perch and related fish. Timber Press Portland, Oregon: 333 pp.

    Google Scholar 

  • Czarnecka, M., 2006. Ekologiczny status epifauny zasiedlającej sztuczne podłoża podwodne. (Ecological status of epifauna on artificial underwater substrata). Ph. D. Thesis, N. Copernicus University, Toruń: 178 pp (in Polish).

  • Czarnołęski, M., J. Kozłowski, A. Stańczykowska & K. Lewandowski, 2003. Optimal resource allocation explains growth curve diversity in zebra mussels. Evolutionary Ecology Research 5: 571–587.

    Google Scholar 

  • Czarnołęski, M., J. Kozłowski, P. Kubajak, K. Lewandowski, T. Müller, A. Stańczykowska & K. Surówka, 2006. Cross-habitat differences in crush resistance and growth pattern of zebra mussels (Dreissena polymorpha): effects of calcium availability and predator pressure. Archiv für Hydrobiologie 165: 191–208.

    Article  Google Scholar 

  • De Meester, L., P. Dawidowicz, E. Van Gool & C. J. Loose, 1999. Ecology and evolution of predator-induced behavior of zooplankton: depth selection behavior and diel vertical migration. In Tollrian, R. & C. D. Harvel (eds), The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton: 160–176.

    Google Scholar 

  • Freeman, A. S., 2007. Specificity of induced defenses in Mytilus edulis and asymmetrical predator deterrence. Marine Ecology – Progress Series 334: 145–153.

    Article  Google Scholar 

  • Gliwicz, Z. M., 1990. Food thresholds and body size in cladocerans. Nature 343: 638–640.

    Article  Google Scholar 

  • Gliwicz, Z. M., 2005. Food web interactions: why are they reluctant to be manipulated? Plenary Lecture. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 29: 73–88.

    Google Scholar 

  • Green, N. S., B. A. Hazlett & S. Prueff-Jones, 2008. Attachment and shell integrity affects the vulnerability of zebra mussels (Dreissena polymorpha) to predation. Journal of Freshwater Ecology 23: 91–99.

    Google Scholar 

  • Griffiths, C. L. & C. A. Richardson, 2006. Chemically induced predator avoidance behaviour in burrowing bivalve Macoma balthica. Journal of Experimental Marine Biology and Ecology 331: 91–98.

    Article  CAS  Google Scholar 

  • Hubertz, E., 1994. Procedure for measuring the force required to remove zebra mussels from substrate. Zebra Mussel Technical Notes Collection, U.S. Army Engineer Research & Development Center, Vicksburg, MS. ZMR-1-19: 1–4.

  • Ishida, S. & K. Iwasaki, 2003. Reduced byssal thread production and movement by the intertidal mussel Hormomya mutabilis in response to effluent from predators. Journal of Ethology 21: 117–122.

    Google Scholar 

  • Kakareko, T., 2000. The ichthyofauna of the lower Vistula River. The state of art and the program of research. Acta Universitatis Nicolai Copernici, Limnological Papers 21: 85–100.

    Google Scholar 

  • Kakareko, T., 2002. The importance of benthic fauna in the diet of small common bream Abramis brama (L.), roach Rutilus rutilus (L.), pikeperch Sander Lucioperca (L.) and ruffe Gymnocephalus cernuus (L.) in the Włocławek Reservoir. Archives of Polish Fisheries 10: 221–231.

    Google Scholar 

  • Karatayev, A. Y., L. E. Burlakova & D. K. Padilla, 2002. Impacts of zebra mussels on aquatic communities and their role as ecosystem engineers. In Leppäkoski, E., S. Gollasch & S. Olenin (eds), Invasive Aquatic Species of Europe: Distribution, Impacts and Management. Kluwer Academic Publishers, Boston: 433–446.

    Google Scholar 

  • Kavouras, J. H. & J. S. Maki, 2003. The effects of natural biofilms on the reattachment of young adult zebra mussels to artificial substrata. Biofouling 19: 247–256.

    Article  PubMed  Google Scholar 

  • Kobak, J., 2004. Recruitment and small-scale spatial distribution of Dreissena polymorpha (Bivalvia) on artificial materials. Archiv für Hydrobiologie 160: 25–44.

    Article  Google Scholar 

  • Kobak, J., 2006. Factors influencing the attachment strength of Dreissena polymorpha (Bivalvia). Biofouling 22: 153–162.

    Article  PubMed  Google Scholar 

  • Kobak, J. & T. Kakareko, 2009. Attachment strength, aggregation and movement of the zebra mussel (Dreissena polymorpha, Bivalvia) in the presence of potential predators. Fundamental and Applied Limnology (Archiv für Hydrobiologie) 174: 193–204.

    Article  Google Scholar 

  • Kobak, J. & P. Nowacki, 2007. Light-related behaviour of zebra mussel (Dreissena polymorpha, Bivalvia). Fundamental and Applied Limnology/Archiv für Hydrobiologie 169: 341–352.

    Article  Google Scholar 

  • Kobak, J., M. Poznańska & T. Kakareko, 2009. Effect of attachment status and aggregation on behaviour of the zebra mussel, Dreissena polymorpha, Bivalvia. Journal of Molluscan Studies 75: 109–117.

    Article  Google Scholar 

  • Koperski, P., 1997. Changes in feeding behaviour of the larvae of the damselfly Enallagma cyathigerum in response to stimuli from predators. Ecological Entomology 22: 167–175.

    Article  Google Scholar 

  • Krist, A. C., 2002. Crayfish induce a defensive shell shape in a freshwater snail. Invertebrate Biology 121: 235–242.

    Article  Google Scholar 

  • Lass, S. & P. Spaak, 2003. Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491: 221–239.

    Article  Google Scholar 

  • Lauer, T. E. & A. Spacie, 2004. Space as a limiting resource in freshwater systems: Competition between zebra mussels (Dreissena polymorpha) and freshwater sponges (Porifera). Hydrobiologia 517: 137–145.

    Article  Google Scholar 

  • Lewandowski, K., 2001. Development of populations of Dreissena polymorpha (Pall.) in lakes. Folia Malacologica 9: 171–213.

    Google Scholar 

  • Magurran, A. E., 1990. The adaptive significance of schooling as an antipredator defence in fish. Annales Zoologici Fennici 27: 51–66.

    Google Scholar 

  • Molloy, D. P., A. Y. Karatayev, L. E. Burlakova, D. P. Kurandina & F. Laruelle, 1997. Natural enemies of zebra mussels: predators, parasites, and ecological competitors. Reviews in Fisheries Science 5: 27–97.

    Article  Google Scholar 

  • Naddafi, R., P. Eklöv & K. Pettersson, 2007. Non-lethal predator effects on the feeding rate and prey selection of the exotic zebra mussel Dreissena polymorpha. Oikos 116: 1289–1298.

    Article  Google Scholar 

  • Nagelkerke, L. A. J. & F. A. Sibbing, 1996. Efficiency of feeding on zebra mussel (Dreissena polymorpha) by common bream (Abramis brama), white bream (Blicca bjoerkna), and roach (Rutilus rutilus): the effects of morphology and behavior. Canadian Journal of Fisheries and Aquatic Sciences 53: 2847–2861.

    Article  Google Scholar 

  • Nicastro, K. R., G. I. Zardi & C. D. McQuaid, 2007. Behavioural response of invasive Mytilus galloprovincialis and indigenous Perna perna mussels exposed to risk of predation. Marine Ecology-Progress Series. 336: 169–175.

    Article  Google Scholar 

  • Orr, M. V., M. El-Bekai, M. Lui, K. Watson & K. Lukowiak, 2007. Predator detection in Lymnaea stagnalis. Journal of Experimental Biology 210: 4150–4158.

    Article  PubMed  Google Scholar 

  • Pavlov, D. S., A. G. Gusar, A. Pyanov & A. N. Gorin, 1986. The results of hydroacoustic observations on roach in Lake Glubokoe in winter. Hydrobiologia 141: 125–132.

    Google Scholar 

  • Pettersson, L. B., P. A. Nilsson & C. Brönmark, 2000. Predator recognition and defence strategies in crucian carp, Carassius carassius. Oikos 88: 200–212.

    Article  Google Scholar 

  • Pijanowska, J. & A. Kowalczewski, 1997. Predators can induce swarming behaviour and locomotory responses in Daphnia. Freshwater Biology 37: 649–656.

    Article  Google Scholar 

  • Prejs, A., K. Lewandowski & A. Stańczykowska, 1990. Size-selective predation by roach (Rutilus rutilus) on zebra mussel (Dreissena polymorpha): field studies. Oecologia 83: 378–384.

    Google Scholar 

  • Rajagopal, S., G. Van der Velde, M. Gaag & H. A. van der Jenner, 2005. Byssal detachment underestimates tolerance of mussels to toxic compounds. Marine Pollution Bulletin 50: 20–29.

    Article  CAS  PubMed  Google Scholar 

  • Reimer, O. & S. Harms-Ringdahl, 2001. Predator-inducible changes in blue mussels from the predator-free Baltic Sea. Marine Biology 139: 959–965.

    Article  Google Scholar 

  • Reimer, O. & M. Tedengren, 1997. Predator-induced changes in byssal attachment, aggregation and migration in the blue mussel, Mytilus edulis. Marine and Freshwater Behaviour and Physiology 30: 251–266.

    Article  Google Scholar 

  • Smallegange, I. M. & J. Van Der Meer, 2003. Why do shore crabs not prefer the most profitable mussels? Journal of Animal Ecology 72: 599–607.

    Article  Google Scholar 

  • Smith, L. D. & J. A. Jennings, 2000. Induced defensive responses by the bivalve Mytilus edulis to predators with different attack modes. Marine Biology 136: 461–469.

    Article  Google Scholar 

  • Stańczykowska, A., 1964. On the relationship between abundance, aggregations and “condition” of Dreissena polymorpha Pall. in 36 Mazurian Lakes. Ekologia Polska A 34: 653–690.

    Google Scholar 

  • Thorp, J. H., J. E. Alexander, K. S. Greenwood, A. F. Casper, R. K. Kessler, A. R. Black, W. Fang, A. F. Westin, R. B. Summers, T. W. Sellers & B. Lewis, 1994. Predicting success of riverine populations of zebra mussels (Dreissena polymorpha) – early colonization and microhabitat distribution in the Ohio River. Proceedings of The Fourth International Zebra Mussel Conference, Madison, Wisconsin, March 1994: 456–476.

  • Toomey, M. B., D. McCabe & J. E. Marsden, 2002. Factors affecting the movement of adult zebra mussels (Dreissena polymorpha). Journal of the North American Benthological Society 21: 468–475.

    Article  Google Scholar 

  • Tuchman, N. C., R. L. Burks, C. A. Call & J. Smarrelli, 2004. Flow rate and vertical position influence ingestion rates of colonial zebra mussels (Dreissena polymorpha). Freshwater Biology 49: 191–198.

    Article  Google Scholar 

  • Uryu, Y., K. Iwasaki & M. Hinoue, 1996. Laboratory experiments on behaviour and movement of a freshwater mussel, Limnoperna fortunei (Dunker). Journal of Molluscan Studies 62: 327–341.

    Article  Google Scholar 

  • von Elert, E. & G. Pohnert, 2000. Predator specificity of kairomones in diel vertical migration of Daphnia: a chemical approach. Oikos 88: 119–128.

    Article  Google Scholar 

  • Walz, N., 1973. Studies on the biology of Dreissena polymorpha in Lake Constance. Archiv für Hydrobiologie (Supplement) 42: 452–482.

    Google Scholar 

  • Weber, A., 2003. More than one ‘fish kairomone’? Perch and stickleback kairomones affect Daphnia life history traits differently. Hydrobiologia 498: 143–150.

    Article  Google Scholar 

  • Weetman, D. & D. Atkinson, 2002. Antipredator reaction norms for life history traits in Daphnia pulex: dependence on temperature and food. Oikos 98: 299–307.

    Article  Google Scholar 

  • Werner, S., M. Mörtl, H. G. Bauer & K. O. Rothhaupt, 2005. Strong impact of wintering waterbirds on zebra mussel (Dreissena polymorpha) populations at Lake Constance, Germany. Freshwater Biology 50: 1412–1426.

    Article  Google Scholar 

  • Westerbom, M., A. Lappalainen & O. Mustonen, 2006. Invariant size selection of blue mussels by roach despite variable prey size distributions. Marine Ecology – Progress Series 328: 161–170.

    Article  Google Scholar 

  • Wiąckowski, K., J. Fyda & A. Ciećko, 2004. The behaviour of an omnivorous protozoan affects the extent of induced morphological defence in a protozoan prey. Freshwater Biology 49: 801–809.

    Article  Google Scholar 

  • Wisenden, B. D., J. Karst, J. Miller, S. Miller & L. Fuselier, 2008. Anti-predator behaviour in response to conspecific chemical alarm cues in an esociform fish, Umbra limi (Kirtland 1840). Environmental Biology of Fishes 82: 85–92.

    Article  Google Scholar 

  • Yoshida, T., L. E. Jones, S. P. Ellner, G. F. Fussmann & N. G. Hairston Jr, 2003. Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424: 303–306.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank to Andrzej Denis, Szymon Denis, Hubert Denis and Józef Liczkowski for collecting mussels. We are also extremely grateful to Arkadiusz Mierzejewski and Krzysztof Puwalski for their help in capturing fish. Our study was supported by the Grant of the Polish Ministry of Science and Higher Education No. N N304 1530 33.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarosław Kobak.

Additional information

Handling editor: L. B. Kats

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobak, J., Kakareko, T. & Poznańska, M. Changes in attachment strength and aggregation of zebra mussel, Dreissena polymorpha in the presence of potential fish predators of various species and size. Hydrobiologia 644, 195–206 (2010). https://doi.org/10.1007/s10750-010-0113-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0113-2

Keywords

Navigation