, Volume 666, Issue 1, pp 155–165 | Cite as

Phylogeography of the copepod Acartia hudsonica in estuaries of the northeastern United States

  • Peter J. Milligan
  • Eli A. Stahl
  • Nikolaos V. Schizas
  • Jefferson T. TurnerEmail author


Copepods of the genus Acartia dominate zooplankton assemblages in northwestern Atlantic estuaries, many of which originated after the last glacial maximum 10,000–18,000 years ago. Acartia hudsonica occurs, at least seasonally, in estuaries from Chesapeake Bay to Labrador/Newfoundland. We sequenced the mitochondrial gene Cytochrome B (CytB) of 75 individuals of A. hudsonica from 26 estuaries from New Jersey to Maine, covering four biogeographic regions, and 11 individuals of Acartia tonsa from four of these estuaries in the southern part of the sampling range. A. hudsonica exhibited exceptionally high intraspecific DNA sequence variation. Uncorrected p-distances between sequences ranged from 0.3 to 31%. Five highly divergent sequence groups differed in frequencies across populations and biogeographic regions. One sequence group dominated northern localities, and two sequence groups were found at intermediate to high frequencies in two southern biogeographic regions. Ages of the sequence groups were estimated to be 11, 13, 30, and 37 million years, by applying a molecular clock calibrated by divergence in Alpheus snapping shrimps across the Isthmus of Panama. These ages were compared with independent biogeographic paleoceanographic data, and may have coincided with periods of global climate change over the past 40 MY.


Acartia hudsonica Genomics Phylogeography Mitochondrial DNA 



This project was partially funded by a NSF-EPSCoR grant awarded to NVS. DNA sequencing was performed in the Sequencing and Genotyping facility of the University of Puerto Rico-Río Piedras, which is supported in part by NCRR AABRE Grant #P20 RR16470, NIH-SCORE Grant #S06GM08102, the University of Puerto Rico Biology Department, and NSFCREST Grant #0206200.


  1. Altschul, S. F., W. Gish, W. Miller, E. W. Meyers & D. J. Lipman, 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.PubMedGoogle Scholar
  2. Anderson, D. M., B. A. Keafer, W. R. Geyer, R. P. Signell & T. C. Loder, 2005. Toxic Alexandrium blooms in the western Gulf of Maine: the plume advection hypothesis revisited. Limnology & Oceanography 50: 328–345.CrossRefGoogle Scholar
  3. Bradford, J. M., 1976. Partial revision of the Acartia subgenus Acartiura (Copepoda: Calanoida: Acartiidae). New Zealand Journal of Marine and Freshwater Research 10: 159–202.CrossRefGoogle Scholar
  4. Bucklin, A., B. W. Frost & T. D. Kocher, 1992. DNA sequence variation of the mitochondrial 16S rRNA in Calanus (Copepoda: Calanoida): intraspecific and interspecific patterns. Molecular Marine Biology & Biotechnology 1: 397–407.Google Scholar
  5. Bucklin, A., B. W. Frost & T. D. Kocher, 1995. Molecular systematics of six Calanus and three Metridia species (Calanoida: Copepoda). Marine Biology 121: 655–664.CrossRefGoogle Scholar
  6. Bucklin, A., R. C. Sundt & G. Dahle, 1996. The population genetics of Calanus finmarchicus in the North Atlantic. Ophelia 44: 29–45.Google Scholar
  7. Bucklin, A., S. B. Smolenack, A. M. Bentley & P. H. Wiebe, 1997. Gene flow patterns of the euphausiid, Meganyctiphanes norvegica, in the NW Atlantic based on mtDNA sequences for cytochrome b and cytochrome oxidase I. Journal of Plankton Research 19: 1763–1781.CrossRefGoogle Scholar
  8. Bucklin, A., M. Guarnieri, R. S. Hill, A. M. Bentley & S. Kaartvedt, 1999. Taxonomic and systematic assessment of planktonic copepods using mitochondrial COI sequence variation and competitive, species-specific PCR. In Zehr, J. P. & M. A. Voytek (eds), Molecular Ecology of Aquatic Communities. Hydrobiologia 401: 239–254.Google Scholar
  9. Bucklin, A., B. W. Frost, J. Bradford-Grieve, L. D. Allen & N. J. Copley, 2003. Molecular systematic and phylogenetic assessment of 34 calanoid copepod species of the Calanidae and Clausocalanidae. Marine Biology 142: 333–343.Google Scholar
  10. Caudill, C. C. & A. Bucklin, 2004. Molecular phylogeography and evolutionary history of the estuarine copepod, Acartia tonsa, on the northwest Atlantic coast. Hydrobiologia 511: 91–102.CrossRefGoogle Scholar
  11. Chen, G. & M. P. Hare, 2008. Cryptic ecological diversification of a planktonic estuarine copepod, Acartia tonsa. Molecular Ecology 17: 1451–1468.PubMedCrossRefGoogle Scholar
  12. Citarella, G., 1982. Le zooplankton de la baie de Shédiac (Nouveau-Brunswick). Journal of Plankton Research 4: 791–812.CrossRefGoogle Scholar
  13. Davis, M. B. & R. G. Shaw, 2001. Range shifts and adaptive responses to Quaternary climate change. Science 292: 673–679.PubMedCrossRefGoogle Scholar
  14. Donoghue, P. C. J. & M. Benton, 2007. Rocks and clocks: calibrating the Tree of Life using fossils and molecules. Trends in Ecology and Evolution 22: 424–431.PubMedCrossRefGoogle Scholar
  15. Durbin, E. G., M. C. Casas, T. A. Rynearson & D. C. Smith, 2008. Measurement of copepod predation on nauplii using a qPCR of the cytochrome oxidase I gene. Marine Biology 153: 699–707.CrossRefGoogle Scholar
  16. Ekman, S., 1953. Zoogeography of the Sea. Sidgwick and Jackson, London.Google Scholar
  17. Eldrett, J. S., I. C. Harding, P. A. Wilson, E. Butler & A. P. Roberts, 2007. Continental ice in Greenland during the Eocene and Oligocene. Nature 466: 176–179.CrossRefGoogle Scholar
  18. Excoffier, L., P. E. Smouse & J. M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491.PubMedGoogle Scholar
  19. Excoffier, L., G. Laval & S. Schneider, 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.PubMedGoogle Scholar
  20. Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.CrossRefGoogle Scholar
  21. Goetze, E. & J. Bradford-Grieve, 2005. Genetic and morphological description of Eucalanus spinifer T. Scott, 1894 (Calanoida: Eucalanidae), a circumglobal sister species of the copepod E. hyalinus s.s. (Claus, 1866). Progress in Oceanography 65: 55–87.CrossRefGoogle Scholar
  22. Graur, D. & W. Martin, 2004. Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends in Genetics 20: 80–86.PubMedCrossRefGoogle Scholar
  23. Hickerson, M. J., M. A. Gilchrist & N. Takebayashi, 2003. Calibrating a molecular clock from phylogeographic data: moments and likelihood estimators. Evolution 57: 2216–2225.PubMedGoogle Scholar
  24. Ho, S. Y. W. & G. Larson, 2006. Molecular clocks: when times are a-changin’. Trends in Genetics 22: 79–83.PubMedCrossRefGoogle Scholar
  25. Knowlton, N. & L. A. Weigt, 1998. New dates and new rates for divergence across the Isthmus of Panama. Proceedings of the Royal Society of London Series B 265: 2257–2263.CrossRefGoogle Scholar
  26. Kumar, S., K. Tamura & M. Nei, 2004. MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5: 150–163.PubMedCrossRefGoogle Scholar
  27. Lambeck, K. & J. Chappell, 2001. Sea level change through the last glacial cycle. Science 292: 679–686.PubMedCrossRefGoogle Scholar
  28. Lee, W. Y. & B. J. McAlice, 1979. Seasonal succession and breeding cycles of three species of Acartia (Copepoda: Calanoida) in a Maine estuary. Estuaries 2: 228–235.CrossRefGoogle Scholar
  29. Machida, R. J., M. U. Miya, M. Nishida & S. Nishida, 2004. Large-scale gene arrangements in the mitochondrial genomes of two calanoid copepods Eucalanus bungii and Neocalanus cristatus (Crustacea), with notes on new versatile primers for the srRNA and COI genes. Gene 332: 71–78.PubMedCrossRefGoogle Scholar
  30. Maddison, D. R. & W. P. Maddison, 2000. MacClade: Analysis of Phylogeny and Character Evolution, Version 4.0. Sinauer Associates, Sunderland, MA.Google Scholar
  31. Marcus, N. H., R. V. Lutz, W. Burnett & P. Cable, 1994. Age, viability, and vertical distribution of zooplankton resting eggs from an anoxic basin: evidence of an egg bank. Limnology & Oceanography 39: 154–158.CrossRefGoogle Scholar
  32. McAlice, B. J., 1981. On the post-glacial history of Acartia tonsa (Copepoda: Calanoida) in the Gulf of Maine and the Gulf of St. Lawrence. Marine Biology 64: 267–272.Google Scholar
  33. Merritt, T. J. S., L. Shi, M. C. Case, M. A. Rex, R. J. Etter & J. M. Quattro, 1998. “Universal” cytochrome b primers facilitate intraspecific studies in molluscan taxa. Molecular Marine Biology & Biotechnology 7: 7–11.Google Scholar
  34. Nei, M. & T. Gojobori, 1985. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution 3: 418–426.Google Scholar
  35. Papadopoulos, L. N., K. T. C. A. Peijnenburg & P. C. Luttikhuizen, 2005. Phylogeography of the calanoid copepods Calanus helgolandicus and C. euxinus suggests Pleistocene divergences between Atlantic, Mediterranean, and Black Sea populations. Marine Biology 147: 1353–1365.CrossRefGoogle Scholar
  36. Posada, D. & K. A. Crandall, 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–819.PubMedCrossRefGoogle Scholar
  37. Pulquerio, M. J. F. & R. A. Nichols, 2006. Dates from the molecular clock: how wrong can we be? Trends in Ecology and Evolution 22: 180–184.PubMedCrossRefGoogle Scholar
  38. Ronquist, F. & J. P. Huelsenbeck, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.PubMedCrossRefGoogle Scholar
  39. Rozas, J., J. C. Sánchez-DelBarrio, X. Messeguer & R. Rozas, 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497.PubMedCrossRefGoogle Scholar
  40. Schizas, N. V., G. T. Street, B. C. Coull, G. T. Chandler & J. M. Quattro, 1999. Molecular population structure of the benthic copepod Microarthridion littorale along the Southeastern and Gulf coasts of the United States. Marine Biology 135: 399–405.CrossRefGoogle Scholar
  41. Sullivan, B. K., J. H. Costello & D. Van Keuren, 2007. Seasonality of the copepods Acartia hudsonica and Acartia tonsa in Narragansett Bay, RI, USA during a period of climate change. Estuarine Coastal Shelf Science 73: 259–267.CrossRefGoogle Scholar
  42. Swofford, D. L., 2003. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sinauer Associates, Sunderland, MA.Google Scholar
  43. Tester, P. A. & J. T. Turner, 1991. Why is Acartia tonsa restricted to estuarine habitats? Proceedings of the 4th International Copepod Conference, Bulletin of the Plankton Society of Japan, Special Volume 603–611.Google Scholar
  44. Turner, J. T., 1981. Latitudinal patterns of calanoid and cyclopoid copepod diversity in estuarine waters of eastern North America. Journal of Biogeography 8: 369–382.CrossRefGoogle Scholar
  45. Turner, J. T., 1994. Planktonic copepods of Boston Harbor, Massachusetts Bay and Cape Cod Bay, 1992. In Ferrari, F. D. & B. P. Bradley (eds), Ecology and Morphology of Copepods. Proceedings of the 5th International Conference on Copepoda, Baltimore, MD, June 6–12, 1993. Hydrobiologia 292/293: 405–413.Google Scholar
  46. Weir, B. S., 1996. Genetic Data Analysis II. Sinauer Associates, Sunderland, MA.Google Scholar
  47. Welch, J. J. & L. Bromham, 2005. Molecular dating when rates vary. Trends in Ecology and Evolution 20: 320–327.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Peter J. Milligan
    • 1
  • Eli A. Stahl
    • 2
  • Nikolaos V. Schizas
    • 3
  • Jefferson T. Turner
    • 1
    • 2
    Email author
  1. 1.School of Marine Science and TechnologyUniversity of Massachusetts DartmouthNew BedfordUSA
  2. 2.Biology DepartmentUniversity of Massachusetts DartmouthNorth DartmouthUSA
  3. 3.Department of Marine SciencesUniversity of Puerto RicoMayagüezUSA

Personalised recommendations