, Volume 637, Issue 1, pp 19–31 | Cite as

Bacterial production in the Lower Mississippi River: importance of suspended sediment and phytoplankton biomass

  • Clifford A. Ochs
  • Heath E. Capello
  • Orathai Pongruktham
Primary research paper


The roles and metabolic activity of heterotrophic bacteria, along with factors controlling their activity, are poorly known for large, turbid rivers. The aim of this study was to evaluate temporal patterns in heterotrophic bacterial production (BP) in the main channel of the Lower Mississippi River (LMR) in relation to several seasonally dynamic environmental factors. We hypothesized that whole-water BP would vary with levels of temperature, as well as phytoplankton biomass and suspended sediment concentration. Further, we hypothesized that bacteria attached to suspended sediment would comprise an important component of whole-water BP, their importance varying with sediment concentration. Measurements were made at three locations on the LMR for up to 29 months. Bacterial production in whole-water ranged over an order of magnitude between summer and winter, with little variation among sites. Peaks in whole-water BP were associated with periods of high suspended sediment concentrations in spring, and elevated phytoplankton biomass in summer. Attached BP was correlated with all the measures of sediment concentration, especially particulate phosphorus, and accounted for a large majority of water-column BP. After temperature, the only positive correlate of free-living cells was with phytoplankton biomass. Rates of BP in the LMR during summer were much higher than measurements made previously in the Mississippi River plume, similar to the Hudson River, but lower than in three large tributaries of the LMR. Determination of bacterial population dynamics is an essential step in analysis of the food web structure and biogeochemical processes of large rivers. This is the first study of heterotrophic bacterial production in the main channel of the LMR.


Bacteria River Production Suspended sediment Mississippi River 


  1. Abell, R. A., D. M. Olson, E. Dinerstein, P. T. Hurley, J. T. Diggs, W. Eichbaum, S. Walters, W. Wettengel, T. Allnutt, C. J. Loucks & P. Hedao, 2000. Freshwater ecoregions of North America: a conservation assessment. Island Press, Washington, DC.Google Scholar
  2. Allison, M. A., T. S. Bianchi, B. A. McKee & T. P. Sampere, 2007. Carbon burial on river-dominated continental shelves: impact of historical changes in sediment loading adjacent to the Mississippi River. Geophysical Research Letters 34: L01606.CrossRefGoogle Scholar
  3. Amon, R. M. W. & R. Benner, 1998. Seasonal patterns of bacterial abundance and production in the Mississippi River plume and their importance for the fate of enhanced primary production. Microbial Ecology 35: 289–300.CrossRefPubMedGoogle Scholar
  4. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.CrossRefGoogle Scholar
  5. Battin, T. J., L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold & F. Sabater, 2008. Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience 1: 95–100.CrossRefGoogle Scholar
  6. Basu, B. K. & F. R. Pick, 1996. Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnology and Oceanography 41: 1572–1577.Google Scholar
  7. Bayley, P. B., 1995. Understanding large river-floodplain ecosystems. Bioscience 45: 153–158.CrossRefGoogle Scholar
  8. Benner, R., S. Opsahl, G. Chin-Leo, J. E. Richey & B. R. Forsberg, 1995. Bacterial carbon metabolism in the Amazon River system. Limnology and Oceanography 40: 1262–1270.Google Scholar
  9. Bianchi, T. S. & M. A. Allison, 2009. Large-river delta-front estuaries as natural “recorders” of global environmental change. Proceedings National Academy of Sciences 106: 8085–8092.Google Scholar
  10. Bird, D. F., 1999. A critical examination of substoichiometric isotope dilution analysis using thymidine and leucine. Scientia Marina 63: 6–70.CrossRefGoogle Scholar
  11. Castillo, M. M., J. D. Allan, R. L. Sinsabaugh & G. W. Kling, 2004. Seasonal and interannual variation of bacterial production in lowland rivers of the Orinoco basin. Freshwater Biology 49: 1400–1414.CrossRefGoogle Scholar
  12. Chin-Leo, G. & R. Benner, 1992. Enhanced bacterioplankton production and respiration at intermediate salinities in the Mississippi River plume. Marine Ecology Progress Series 87: 87–103.CrossRefGoogle Scholar
  13. Cole, J. J., S. Findlay & M. L. Pace, 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series 43: 1–10.CrossRefGoogle Scholar
  14. Cole, J. J., N. F. Caraco & B. L. Peierls, 1992. Can phytoplankton maintain a positive carbon balance in a turbid freshwater, tidal estuary? Limnology and Oceanography 37: 1608–1617.CrossRefGoogle Scholar
  15. Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters in the terrestrial carbon budget. Ecosystems 10: 171–184.CrossRefGoogle Scholar
  16. Crump, B. C. & J. A. Baross, 1996. Particle-attached bacteria and heterotrophic plankton associated with the Columbia River estuarine turbidity maxima. Marine Ecology Progress Series 138: 265–273.CrossRefGoogle Scholar
  17. Crump, B. C., J. A. Baross & C. A. Simenstad, 1998. Dominance of particle-attached bacteria in the Columbia River estuary, USA. Aquatic Microbial Ecology 14: 7–18.CrossRefGoogle Scholar
  18. Crump, B. C., E. V. Armbrust & J. A. Baross, 1999. Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Applied and Environmental Microbiology 65: 3192–3204.PubMedGoogle Scholar
  19. Dagg, M., R. Sato, H. Liu, T. S. Bianchi, R. Green & R. Powell, 2008. Microbial food web contributions to bottom water hypoxia in the northern Gulf of Mexico. Continental Shelf Research 28: 1127–1137.CrossRefGoogle Scholar
  20. del Giorgio, P. A. & M. L. Pace, 2008. Relative independence of dissolved organic carbon transport and processing in a large temperate river: the Hudson River as both pipe and reactor. Limnology and Oceanography 53: 185–197.Google Scholar
  21. del Giorgio, P. A., M. L. Pace & D. Fischer, 2006. Relationship of bacterial growth efficiency to spatial variation in bacterial activity in the Hudson River. Aquatic Microbial Ecology 45: 55–67.CrossRefGoogle Scholar
  22. Edwards, R. T., 1987. Sestonic bacteria as a food source for filtering invertebrates in two southeastern blackwater rivers. Limnology and Oceanography 32: 221–234.CrossRefGoogle Scholar
  23. Edwards, R. T. & J. L. Meyer, 1986. Production and turnover of planktonic bacteria in two southeastern blackwater rivers. Applied and Environmental Microbiology 52: 1317–1323.PubMedGoogle Scholar
  24. Findlay, S. E. G., J. L. Meyers & R. T. Edwards, 1984. Measuring bacterial production via rate of incorporation of [3H]thymidine into DNA. Journal of Microbiological Methods 2: 57–72.CrossRefGoogle Scholar
  25. Findlay, S. E. G., M. L. Pace, D. Lints, J. J. Cole, N. F. Caraco & B. Peierls, 1991. Weak coupling of bacterial and algal production in a heterotrophic ecosystem: the Hudson River estuary. Limnology and Oceanography 36: 268–278.CrossRefGoogle Scholar
  26. Garneau, M.-È., W. F. Vincent, R. Terrado & C. Lovejoy, 2009. Importance of particle-associated bacterial heterotrophy in a coastal Arctic ecosystem. Journal of Marine Sciences 75: 185–197.Google Scholar
  27. Goolsby, D. A., W. A. Battaglin, G. B. Lawrence, R. S. Artz, B. T. Aulenbach, R. P. Hooper, D. R. Keeney & G. J. Stensland, 1999. Gulf of Mexico Hypoxia Assessment: Topic #3, Flux and Sources of Nutrients in the Mississippi-Atchafalaya River Basin: Topic 3 Report for the Integrated Assessment of Hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program, Silver Spring, MD.Google Scholar
  28. Hamdan, L. J. & R. B. Jonas, 2006. Seasonal and interannual dynamics of free-living bacterioplankton and microbially labile organic carbon along the salinity gradient of the Potomac River. Estuaries and Coasts 29: 40–53.Google Scholar
  29. Henebry, M. S. & R. W. Gordon, 1989. Bacterial biomass and production in Mississippi River Pool 19. Hydrobiologia 182: 15–23.CrossRefGoogle Scholar
  30. Jochem, F. J., 2003. Photo- and heterotrophic pico- and nanoplankton in the Mississippi River plume: distribution and grazing activity. Journal of Plankton Research 25: 1201–1214.CrossRefGoogle Scholar
  31. Jones, J. G., 1996. Microbial processes in large rivers. Archives of Hydrobiology Supplement 113 Large Rivers 10: 67–77.Google Scholar
  32. Kirchman, D. L., 1993. Leucine incorporation as a measure of biomass production by heterotrophic bacteria. In Kemp, P. F., B. F. Sherr & E. B. Sherr (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, FL.Google Scholar
  33. Koch, R. W., P. A. Bukaveckas & D. L. Guelda, 2007. Importance of phytoplankton carbon to heterotrophic bacteria in the Ohio, Cumberland, and Tennessee rivers, USA. Hydrobiologia 586: 79–91.CrossRefGoogle Scholar
  34. Kritzberg, E. S., J. J. Cole, M. L. Pace & W. Granéli, 2005. Does authochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs? Aquatic Microbial Ecology 38: 103–111.CrossRefGoogle Scholar
  35. Luef, B., F. Aspetsberger, T. Hein, F. Huber & P. Peduzzi, 2007. Impact of hydrology on free-living and particle-associated microorganisms in a river floodplain system (Danube, Austria). Freshwater Biology 52: 1043–4057.CrossRefGoogle Scholar
  36. Maranger, R. J., M. L. Pace, P. A. del Giorgio, N. F. Caraco & J. J. Cole, 2004. Longitudinal spatial patterns of bacterial production and respiration in a large-river-estuary: Implications for ecosystem carbon consumption. Ecosystems 8: 1–14.Google Scholar
  37. Ochs, C. A., 2002. Planktonic microorganisms: bacterioplankton. In Bitton, G. (ed.), Encyclopedia of Environmental Microbiology. John Wiley, N.Y.Google Scholar
  38. Pakulski, J. D., R. Benner, R. Amon, B. Eadie & T. Whitledge, 1995. Community metabolism and nutrient cycling in the Mississippi River plume: evidence for intense nitrification at intermediate salinities. Marine Ecology Progress Series 117: 207–218.CrossRefGoogle Scholar
  39. Pakulski, J. D., R. Benner, T. Whitledge, R. Amon, B. Eadie, L. Cifuentes, J. Ammerman & D. Stockwell, 2000. Microbial metabolism and nutrient cycling in the Mississippi and Atchafalaya River plumes. Estuarine, Coastal and Shelf Science 50: 173–184.CrossRefGoogle Scholar
  40. Peduzzi, P., F. Aspetsberger, T. Hein, F. Huber, S. Kargl-Wagner, B. Luef & Y. Tachkova, 2008. Dissolved organic matter (DOM) and bacterial growth in floodplains of the Danube River under varying hydrological connectivity. Fundamental and Applied Limnology 171: 49–61.CrossRefGoogle Scholar
  41. Porter, K. G. & Y. G. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.CrossRefGoogle Scholar
  42. Presley, B. J., J. H. Refrey & R. F. Shokes, 1980. Heavy metal inputs to Mississippi Delta sediments. Water, Air, and Soil Pollution 13: 481–494.CrossRefGoogle Scholar
  43. Raymond, P. A. & J. J. Cole, 2003. Increase in the export of alkalinity from North America’s largest river. Science 301: 88–91.CrossRefPubMedGoogle Scholar
  44. Roland, F. & J. J. Cole, 1999. Regulation of bacterial growth efficiency in a large turbid estuary. Aquatic Microbial Ecology 20: 31–38.CrossRefGoogle Scholar
  45. Runner, M. S., D. P. Turnipseed & R. H. Coupe, 2002. Streamflow and Nutrient Data for the Yazoo River below Steele Bayou near Long Lake, Mississippi, 1996-2000. U.S. Geological Survey Water-Resources Investigations Report 02-4215.Google Scholar
  46. Servais, P., 1989. Bacterioplankton biomass and production in the River Meuse (Belgium). Hydrobiologia 174: 99–110.Google Scholar
  47. Simon, M. & F. Azam, 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Marine Ecology Progress Series 51: 201–213.CrossRefGoogle Scholar
  48. Smith, D. C. & F. Azam, 1992. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Marine Microbial Food Webs 6: 107–114.Google Scholar
  49. Solorzano, L. & J. H. Sharp, 1980. Determination of total dissolved phosphorus and particulate phosphorus in natural water. Limnology and Oceanography 24: 754–758.CrossRefGoogle Scholar
  50. Turner, R. E. & N. N. Rabalais, 2003. Linking landscape and water quality in the Mississippi River Basin for 200 years. Bioscience 53: 563–572.CrossRefGoogle Scholar
  51. Turner, R. E. & N. N. Rabalais, 2004. Suspended sediment, C, N, P, and Si yields from the Mississippi River Basin. Hydrobiologia 511: 79–89.CrossRefGoogle Scholar
  52. U.S. Army Corps of Engineers New Orleans District: River Velocities: http://www.mvn.usace.army.mil/eng/edhd/no_bar.asp (15 June 2009).
  53. Wetzel, R. G., 2001. Limnology. Academic Press, San Diego, CA.Google Scholar
  54. Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses. Springer-Verlag, NY, NY.Google Scholar
  55. Williams, J. D., M. L. Warren Jr, K. S. Cummings, J. L. Harris & R. G. Neves, 1992. Conservation status of freshwater mussels in the United States and Canada. Fisheries 18: 6–22.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Clifford A. Ochs
    • 1
  • Heath E. Capello
    • 1
  • Orathai Pongruktham
    • 1
  1. 1.Department of BiologyUniversity of MississippiUniversityUSA

Personalised recommendations