, Volume 657, Issue 1, pp 107–121 | Cite as

The physico-chemical habitat template for periphyton in alpine glacial streams under a changing climate

  • U. UehlingerEmail author
  • C. T. Robinson
  • M. Hieber
  • R. Zah


The physico-chemical habitat template of glacial streams in the Alps is characterized by distinct and predictable changes between harsh and relatively benign periods. Spring and autumn were thought to be windows of favorable environmental conditions conducive for periphyton development. Periphyton biomass (measured as chlorophyll a and ash-free dry mass) was quantified in five glacial and three non-glacial streams over an annual cycle. One glacial stream was an outlet stream of a proglacial lake. In all glacial streams, seasonal patterns in periphyton were characterized by low biomass during summer high flow when high turbidity and transport of coarse sediment prevailed. With the end of icemelt in autumn, environmental conditions became more favorable and periphyton biomass increased. Biomass peaked between late September and January. In spring, low flow, low turbidity, and a lack of coarse sediment transport were not paralleled by an increase in periphyton biomass. In the non-glacial streams, seasonal periphyton patterns were similar to those of glacial streams, but biomass was significantly higher. Glacier recession from climate change may shift water sources in glacier streams and attenuate the glacial flow pulse. These changes could alter predicted periods of optimal periphyton development. The window of opportunity for periphyton accrual will shift earlier and extend into autumn in channels that retain surface flows.


Alpine Algae Primary production Stream Flow regime Glacier Ecological windows 



We thank R. Illi and B. Ribi for analyses of water chemistry and chlorophyll a, and the Swiss Federal Office for Water and Geology for discharge data of several streams. We appreciate the helpful comments of two anonymous reviewers.


  1. Blumthaler, M., W. Ambach & W. Rehwald, 1992. Solar UV-A and UV-B radiation fluxes at two Alpine stations at different altitudes. Theoretical and Applied Climatology 46: 39–44.CrossRefGoogle Scholar
  2. Bothwell, M. L., 1985. Phosphorus limitation of lotic periphyton growth rates: an intersite comparison using continuous-flow troughs (Thompson River system, British Columbia). Limnology and Oceanography 30: 527–542.CrossRefGoogle Scholar
  3. Bothwell, M. L., 1989. Phosphorus-limited growth dynamics of lotic periphytic diatom communities: areal biomass and cellular growth rate responses. Canadian Journal of Fisheries and Aquatic Sciences 46: 1293–1301.CrossRefGoogle Scholar
  4. Bothwell, M. L., D. Sherbot, A. C. Roberge & R. J. Daley, 1993. Influence of natural ultraviolet radiation on lotic periphytic diatom community growth, biomass accrual, and species composition: short-term versus long-term effects. Journal of Phycology 29: 24–35.CrossRefGoogle Scholar
  5. Braun, L. N., M. Weber & M. Schulz, 2000. Consequences of climate change for runoff from Alpine regions. Annals of glaciology 31: 19–25.CrossRefGoogle Scholar
  6. Bretschko, G., 1966. Untersuchung zur Phosphatführung zentralalpiner Gletscherabflüsse. Archiv Fur Hydrobiologie 62: 327–338.Google Scholar
  7. Brown, L. E., A. M. Milner & D. M. Hannah, 2006. Stability and persistence of alpine stream macroinvertebrate communities and the role of physical habitat variables. Hydrobiologia 560: 159–173.CrossRefGoogle Scholar
  8. Burgherr, P., 2000. Spatio-temporal community patterns of lotic zoobenthos across habitat gradients in an alpine glacial stream ecosystem. PhD thesis. Swiss Federal Institute of Technology, Zurich, Zürich.Google Scholar
  9. Burgherr, P. & J. V. Ward, 2000. Zoobenthos of kryal and lake outlet biotopes in a glacial floodplain. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 27: 1587–1590.Google Scholar
  10. Burgherr, P., J. V. Ward & C. T. Robinson, 2002. Seasonal variation in zoobenthos across habitat gradients in an alpine glacial floodplain (Val Roseg, Swiss Alps). Journal of the North American Benthological Society 21: 561–4575.CrossRefGoogle Scholar
  11. Caldwell, M. M., R. Robberecht & W. D. Billings, 1980. A steep latitudinal gradient of solar ultraviolet-B radiation in the Arctic-Alpine life zone. Ecology 61: 600–611.CrossRefGoogle Scholar
  12. Castella, E., H. Adalsteinsson, J. E. Brittain, G. M. Gíslason, A. Lehmann, V. Lencioni, B. Lods-Crozet, B. Maiolini, A. M. Milner, J. S. Ólafsson, S. J. Saltveit & D. L. Snook, 2001. Macrobenthic invertebrate richness and composition along a latitudinal gradient of European glacier-fed streams. Freshwater Biology 46: 1811–1831.CrossRefGoogle Scholar
  13. Davis, J. C., G. W. Minshall, C. T. Robinson & P. Landres, 2001. Monitoring wilderness stream ecosystems. General Technical Report RMRS-GTR-70. United States Department of Agriculture, Forest service. Rocky Mountain Research Station, Ogden.Google Scholar
  14. DeNicola, D. M. & K. D. Hoagland, 1996. Effects of solar spectral irradiance (visible to UV) on a prairie stream epilithic community. Journal of the North American Benthological Society 15: 155–169.CrossRefGoogle Scholar
  15. Francoeur, S. N. & R. L. Lowe, 1998. Effects of ambient ultraviolet radiation on littoral periphyton: biomass accrual and taxon-specific responses. Journal of Freshwater Ecology 13: 29–37.Google Scholar
  16. Füreder, L., 1999. High alpine streams: cold habitats for insect larvae. In Margesin, R. & F. Schinner (eds), Cold-Adapted Organisms. Ecology, Physiology, Enzymology and Molecular Biology. Springer, Berlin: 181–195.Google Scholar
  17. Gessler, J., 1965. Der Geschiebetriebbeginn bei Mischungen untersucht an natürlichen Abpflästerungserscheinungen in Kanälen. Mitteilungen der Versuchsanstalt für Wasser- und Erdbau der ETH Zürich 69: 1–67.Google Scholar
  18. Gíslason, G. M., H. Adalsteinsson, I. Hanson & K. Svavarsdóttir, 2001. Longitudinal changes in macroinvertebrate assemblages along a glacial river system in central Iceland. Freshwater Biology 46: 1737–1751.CrossRefGoogle Scholar
  19. Gordon, N. D., T. A. McMahon & B. L. Finlayson, 1992. Stream Hydrology. An Introduction for Ecologists. Wiley, Chichester.Google Scholar
  20. Grimm, N. B. & S. G. Fisher, 1986. Nitrogen limitation in a Sonoran Desert (Arizona, USA) stream. Journal of the North American Benthological Society 5: 2–15.CrossRefGoogle Scholar
  21. Günter, A., 1971. Die kritische mittlere Sohlenschubspannung bei Geschiebemischungen unter Berücksichtigung der Deckschichtbildung und der turbulenzbedingten Sohlenschubspannungsschwankunen. Mitteilungen VAW 3. Laboratory of Hydraulics, Hydrology and Glaciology, Swiss Federal Institute of Technology, Zürich.Google Scholar
  22. Gurnell, A. M., 1987. Suspended sediment. In Gurnell, A. M. & M. J. Clark (eds), Glacio-Fluvial Sediment Transfer. Wiley, Chichester: 305–354.Google Scholar
  23. Hawes, I., C. Howard-Williams & W. F. Vincent, 1992. Desiccation and recovery of Antarctic Cyanobacterial Mats. Polar Biology 12: 587–594.CrossRefGoogle Scholar
  24. Hieber, M., C. T. Robinson, S. R. Rushforth & U. Uehlinger, 2001. Algal communities associated with different alpine stream types. Arctic, Antarctic, and Alpine Research 33: 447–456.CrossRefGoogle Scholar
  25. Hieber, M., C. T. Robinson, U. Uehlinger & J. V. Ward, 2002. Are alpine lake outlets less harsh than other alpine streams? Archiv Fur Hydrobiologie 154: 199–223.Google Scholar
  26. Hieber, M., C. T. Robinson, U. Uehlinger & J. V. Ward, 2005. A comparison of benthic macroinvertebrate assemblages among different types of alpine streams. Freshwater Biology 50: 2087–2100.CrossRefGoogle Scholar
  27. Hill, W. R., S. M. Dimick, A. E. McNamara & C. A. Branson, 1997. No effect of ambient UV radiation detected in periphyton and grazers. Limnology and Oceanography 42: 769–774.CrossRefGoogle Scholar
  28. Hill, W. R., P. J. Mulholland & E. R. Marzolf, 2001. Stream ecosystem response to forest leaf emergence in spring. Ecology 82: 2306–2319.CrossRefGoogle Scholar
  29. Hodson, A., P. Mumford & D. Lister, 2004. Suspended sediment and phosphorus in proglacial rivers: bioavailability and potential impacts upon the P status of ice-marginal receiving waters. Hydrological Processes 18: 2409–2422.CrossRefGoogle Scholar
  30. Horton, P., B. Schaefli, A. Mezghani, B. Hingray & A. Musy, 2006. Assessment of climate-change impacts on alpine discharge regimes with climate model uncertainty. Hydrological Processes 20: 2091–2109.CrossRefGoogle Scholar
  31. Howard-Williams, C. & W. F. Vincent, 1989. Microbial communities in southern Victoria Land streams (Antarctica). I. Photosynthesis. Hydrobiologia 172: 27–38.CrossRefGoogle Scholar
  32. Howard-Williams, C., C. L. Vincent, P. A. Broady & W. F. Vincent, 1986. Antarctic stream ecosystems: variability in environmental properties and algal community structure. Internationale Revue der Gesamten Hydrobiologie 71: 511–544.CrossRefGoogle Scholar
  33. Kowanacki, A., 1991. Zonal distribution and classification of the invertebrate community in high mountain streams in South Tyrol (Italy). Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 24: 2010–2014.Google Scholar
  34. Lavandier, P. & H. Décamps, 1984. Estaragne. In Whitton, B. A. (ed.), Ecology of European Rivers. Blackwell, Oxford: 237–263.Google Scholar
  35. Lloyd, D. S., J. P. Koenings & J. D. LaPerriere, 1987. Effects of turbidity in fresh waters of Alaska. North American Journal of Fisheries Management 7: 18–33.CrossRefGoogle Scholar
  36. Malard, F., 2003. Groundwater–surface water interactions. In Ward, J. V. & U. Uehlinger (eds), Ecology of a Glacial Flood Plain. Kluwer Academic Publishers, Dordrecht: 37–56.Google Scholar
  37. Malard, F., U. Uehlinger, R. Zah & K. Tockner, 2006. Flood-pulse and riverscape dynamics in a braided glacial river. Ecology 87: 704–716.CrossRefPubMedGoogle Scholar
  38. McKnight, D. M. & C. M. Tate, 1997. Canada stream: a glacial meltwater stream in Taylor Valley, South Victoria Land, Antarctica. Journal of the North American Benthological Society 16: 14–17.CrossRefGoogle Scholar
  39. Meyns, S., R. Illi & B. Ribi, 1994. Comparison of chlorophyll-a analysis by HPLC and spectrophotometry: where do the differences come from? Archiv Fur Hydrobiologie 132: 129–139.Google Scholar
  40. Milner, A. M. & G. E. Petts, 1994. Glacial rivers: physical habitat and ecology. Freshwater Biology 32: 295–307.CrossRefGoogle Scholar
  41. Milner, A. M., J. E. Brittain, E. Castella & G. E. Petts, 2001. Trends of macroinvertebrate community structure in glacier-fed rivers in relation to environmental conditions: a synthesis. Freshwater Biology 46: 1833–1847.CrossRefGoogle Scholar
  42. Milner, A. M., L. E. Brown & D. M. Hannah, 2009. Hydroecological response of river systems to shrinking glaciers. Hydrological Processes 23: 62–77.CrossRefGoogle Scholar
  43. Newbold, D. J., 1992. Cycles and spirals of nutrients. In Calow, P. & G. E. Petts (eds), The Rivers Handbook. Hydrological and Ecological Principles. Blackwell, London: 379–408.Google Scholar
  44. Paul, F., 2003. The new Swiss glacier inventory 2000. PhD. University of Zurich, Zurich.Google Scholar
  45. Peterson, C. G., 1996. Response of benthic algal communities to natural physical disturbance. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Freshwater Benthic Ecosystems. Academic Press, San Diego: 375–402.Google Scholar
  46. Pfankuch, D. J., 1975. Stream Reach Inventory and Channel Stability Evaluation. U.S.D.A. Forest Service, Missoula, Montana.Google Scholar
  47. Rhim, R., 1996. Critical Loads of Nitrogen and their Exceedances. Environmental Series 275, Swiss Agency for the Environment, Forests and Landscape. Berne, Switzerland.Google Scholar
  48. Rinke, K., C. T. Robinson & U. Uehlinger, 2001. A note on abiotic factors that constrain periphyton growth in Alpine glacier streams. International Review of Hydrobiology 86: 361–366.CrossRefGoogle Scholar
  49. Robinson, C. T. & S. Matthaei, 2007. Hydrological heterogeneity of an Alpine streamlake network in Switzerland. Hydrological Processes 21: 3146–3154.CrossRefGoogle Scholar
  50. Robinson, C. T., U. Uehlinger & M. Hieber, 2001. Spatio-temporal variation in macroinvertebrate assemblages of glacial streams in the Swiss Alps. Freshwater Biology 46: 1663–1672.CrossRefGoogle Scholar
  51. Robinson, C. T., U. Uehlinger, F. Guidon, P. Schenkel & R. Skvarc, 2002. Limitation and retention of nutrients in alpine streams of Switzerland. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 28: 263–272.Google Scholar
  52. Roos, J. C. & W. F. Vincent, 1998. Temperature dependence of UV radiation effects on Antarctic cyanobacteria. Journal of Phycology 43: 118–125.CrossRefGoogle Scholar
  53. Röthlisberger, H. & H. Lang, 1987. Glacial hydrology. In Gurnell, A. M. & M. J. Clark (eds), Glacio-Fluvial Sediment Transfer. Wiley, Chichester: 207–284.Google Scholar
  54. Rott, E., M. Cantonati, L. Füreder & P. Pfister, 2006. Benthic algae in high altitude streams of the Alps—a neglected component of the aquatic biota. Hydrobiologia 562: 195–216.CrossRefGoogle Scholar
  55. Schmucki, D. & R. Philipona, 2002. Ultraviolet radiation in the Alps: the altitude effect. Optical Engineering 41: 390–3095.CrossRefGoogle Scholar
  56. Schütz, C., M. Wallinger, R. Burger & L. Füreder, 2001. Effects of snow cover on the benthic fauna in a glacier-fed stream. Freshwater Biology 46: 1691–1704.CrossRefGoogle Scholar
  57. Tockner, K., F. Malard, P. Burgherr, C. T. Robinson, U. Uehlinger, R. Zah & J. V. Ward, 1997. Physico-chemical characterization of channel types in a glacial floodplain ecosystem (Val Roseg, Switzerland). Archiv Fur Hydrobiologie 140: 433–463.Google Scholar
  58. Tockner, K., F. Malard & J. V. Ward, 2000. An extension of the flood pulse concept. Hydrological Processes 14: 2861–2883.CrossRefGoogle Scholar
  59. Tockner, K., F. Malard, U. Uehlinger & J. V. Ward, 2002. Nutrients and organic matter in a glacial river floodplain system (Val Roseg, Switzerland). Limnology and Oceanography 47: 521–535.CrossRefGoogle Scholar
  60. Tonolla, D., 2005. Characterization of the temporary hydro-system of a high alpine catchment (Val Roseg, Switzerland) by GIS mapping and assessment of morphological features. Diploma Thesis, Swiss Federal Institute of Technology, Zurich.Google Scholar
  61. Uehlinger, U., 1991. Spatial and temporal variability of the periphyton biomass in a prealpine river (Necker, Switzerland). Archiv Fur Hydrobiologie 123: 219–237.Google Scholar
  62. Uehlinger, U. & R. Zah, 2003. Organic matter dynamics. In Ward, J. V. & U. Uehlinger (eds), Ecology of a Glacial Floodplain. Kluwer Academic Publishers, The Hague: 199–215.Google Scholar
  63. Uehlinger, U., H. Bührer & P. Reichert, 1996. Periphyton dynamics in a floodprone prealpine river: evaluation of significant processes by modelling. Freshwater Biology 36: 249–263.CrossRefGoogle Scholar
  64. Uehlinger, U., R. Zah & J. V. Ward, 1998. The Val Roseg Project: temporal and spatial patterns of benthic algae in an Alpine stream ecosystem influenced by glacier runoff. In Kovar, K., U. Tappeiner, N. E. Peters & R. G. Craig (eds), Hydrology, Water Resources and Ecology in Headwaters. IAHS Press, Wallingford, U.K: 419–424.Google Scholar
  65. Uehlinger, U., K. Tockner & F. Malard, 2002. Ecological windows in glacial stream ecosystems. EAWAG News 54e: 16–17, 20–21.Google Scholar
  66. Uehlinger, U., F. Malard & J. V. Ward, 2003. Thermal patterns in the surface waters of a glacial river corridor (Val Roseg, Switzerland). Freshwater Biology 48: 284–300.CrossRefGoogle Scholar
  67. Vincent, W. F. & C. Howard-Williams, 1989. Microbial communities in southern Victoria Land streams (Antarctica) II. The effects of low temperature. Hydrobiologia 172: 39–49.CrossRefGoogle Scholar
  68. Vinebrooke, R. D. & P. R. Leavitt, 1996. Effects of ultraviolet radiation on periphyton in an alpine lake. Limnology and Oceanography 41: 1035–1040.CrossRefGoogle Scholar
  69. Vinebrooke, R. D. & P. R. Leavitt, 1999. Differential responses of littoral communities to ultraviolet radiation in an alpine lake. Ecology 80: 223–237.CrossRefGoogle Scholar
  70. Ward, J. V., 1994. Ecology of alpine streams. Freshwater Biology 32: 277–294.CrossRefGoogle Scholar
  71. Ward, J. V. & U. Uehlinger (eds), 2003. Ecology of a Glacial Flood Plain. Kluwer Academic Publishers, Dordrecht.Google Scholar
  72. Watson, R. T., M. C. Zinyowera & R. H. Moss, 1997. The Regional Impacts of Climate Change: An Assessment of Vulnerability. Cambridge University Press, Cambridge.Google Scholar
  73. Wellnitz, T. A. & J. V. Ward, 2000. Herbivory and irradiance shape periphytic architecture in a Swiss alpine stream. Limnology and Oceanography 45: 64–75.CrossRefGoogle Scholar
  74. Zah, R. & U. Uehlinger, 2001. Particulate organic matter inputs to a glacial stream ecosystem in the Swiss Alps. Freshwater Biology 46: 1597–1608.CrossRefGoogle Scholar
  75. Zar, J. H., 1996. Biostatistical Analysis. Prentice Hall, Upper Saddle River, N.J.Google Scholar
  76. Zbinden, M., M. Hieber, C. T. Robinson & U. Uehlinger, 2008. Short-term colonization patterns of macroinvertebrates in alpine streams. Fundamental and Applied Limnology 171: 75–86.CrossRefGoogle Scholar
  77. Zemp, M., W. Haeberli, M. Hoelzle & F. Paul, 2006. Alpine glaciers to disappear within decades. Geophysical Research Letters 33: L13501–L13504.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • U. Uehlinger
    • 1
    • 2
    Email author
  • C. T. Robinson
    • 1
    • 2
  • M. Hieber
    • 3
  • R. Zah
    • 4
  1. 1.Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
  2. 2.Institute of Integrative BiologyETH ZürichZürichSwitzerland
  3. 3.INTERTEAMLuzernSwitzerland
  4. 4.Department Sustainable Information TechnologySwiss Federal Institute for Material Testing (EMPA)St. GallenSwitzerland

Personalised recommendations