Skip to main content
Log in

Composition changes of phototrophic microbial communities along the salinity gradient in the solar saltern evaporation ponds of Eilat, Israel

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The planktonic and benthic microbial communities in eight hypersaline evaporation ponds of Eilat, Israel, ranging in salinity between 58 and 329 g l−1, were studied by microscopic methods. Marked shifts in the species composition of phototrophic microbial communities were found along the salinity gradient. Planktonic communities consisted mainly of cyanobacteria and diatoms, except for the pond with the highest salinity, which was dominated by green alga Dunaliella salina. Species composition of benthic communities was markedly different in each pond. At the lowest salinities, mats of oscillatoriacean cyanobacteria, accompanied with diatoms, covered the sediment. The cyanobacterium Halothece sp. dominated the ponds of intermediate salinity where gypsum precipitated. However, less abundant Halothece sp. also occurred in lower salinities. At the highest salinities the bottom was covered by salt crystals and was not colonized by phototrophic microorganisms. Photosynthetically active oxygenic microorganisms (cyanobacteria, diatoms) were found to abound even in deep layers of sediments (up to 5 cm) where light and oxygen are supposedly unavailable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abed, R. M. M. & F. Garcia-Pichel, 2001. Long-term compositional changes after transplant in a microbial mat cyanobacterial community revealed using a polyphasic approach. Environmental Microbiology 3: 53–62.

    Article  CAS  PubMed  Google Scholar 

  • Abid, O., A. Sallami-Kammoun, H. Ayadi, Z. Drira, A. Bouain & L. Aleya, 2008. Biochemical adaptation of phytoplankton to salinity and nutrient gradients in a coastal solar saltern, Tunisia. Estuarine, Coastal and Shelf Science 80: 391–400.

    Article  Google Scholar 

  • Beneš, J., J. Kaštovský, R. Kočárová, P. Kočár, K. Kubečková, P. Pokorný & P. Starec, 2002. Archaeobotany of the Old Prague Town defence system, Czech Republic: archaeology, macro-remains, pollen, and diatoms. Vegetation history and archeobotany 11: 107–119.

    Article  Google Scholar 

  • Clavero, E., M. Hernández-Mariné, J. O. Grimalt & F. Garcia-Pichel, 2000. Salinity tolerance of diatoms from Thalassic hypersaline environments. Journal of Phycology 36: 1021–1034.

    Article  Google Scholar 

  • Cohen, Y., W. E. Krumbein & M. Shilo, 1977. Solar Lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production. Limnology and Oceanography 22: 609–620.

    CAS  Google Scholar 

  • Decker, K. L. M., C. S. Potter, B. M. Bebout, D. J. Des Marais, S. Carpenter, M. Discipulo, T. M. Hoehler, S. R. Miller, B. Thamdrup, K. A. Turk & P. T. Visscher, 2005. Mathematical simulation of the diel O, S, and C biogeochemistry of a hypersaline microbial mat. FEMS Microbial Ecology 52: 377–395.

    Article  CAS  Google Scholar 

  • Des Marais, D. J., 1995. The biogeochemistry of hypersaline microbial mats. In Jones, J. G. (ed.), Advances in microbial ecology, Vol. 14. Plenum Press, New York: 251–274.

    Google Scholar 

  • Dor, I., N. Carl & I. Baldinger, 1991. Polymorphism and salinity tolerance as a criterion for differentiation of three new species of Chroococcidiopsis (Chroococcales). Algological Studies 64: 411–421.

    Google Scholar 

  • Ehrlich, A., 1975. Diatoms from the surface sediments of the. Bardawil lagoon, northern Sinai, paleoecological significance. Nova Hedwigia Beiheft 53: 253–277.

    Google Scholar 

  • Elevi Bardavid, R., P. Khristo & A. Oren, 2008. Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds. Extremophiles 12: 5–14.

    Article  PubMed  Google Scholar 

  • Estrada, M., P. Henriksen, J. M. Gasol, E. O. Casamayor & C. Pedrós-Alió, 2004. Diversity of planktonic photoautotrophic microorganisms along a salinity gradient as depicted by microscopy, flow cytometry, pigment analysis and DNA-based methods. FEMS Microbial Ecology 49: 281–293.

    Article  CAS  Google Scholar 

  • Fourçans, A., A. Ranchou-Peyruse, P. Caumette & R. Duran, 2008. Molecular analysis of the spatio-temporal distribution of sulfate-reducing bacteria (SRB) in Camargue (France) hypersaline microbial mat. Microbial Ecology 56: 90–100.

    Article  PubMed  CAS  Google Scholar 

  • Fourtanier, E. & J. P. Kociolek, 2008. Catalogue of Diatom Names, California Academy of Sciences, On-line version. http://www.calacademy.org/research/diatoms/names/index.asp. Last Accessed: November 2008.

  • Garlick, S., A. Oren & E. Padan, 1977. Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. Journal of Bacteriology 129: 623–629.

    CAS  PubMed  Google Scholar 

  • Garcia-Pichel, F., U. Nübel & G. Muyzer, 1998. The phylogeny of unicellular, extremely halotolerant cyanobacteria. Archiv für Microbiologie 169: 469–482.

    Article  CAS  Google Scholar 

  • Garside, C. & J. C. Garside, 1993. The “f-ratio on 20°W during the North Atlantic Bloom Experiment. Deep-Sea Research 40: 75–90.

    Article  CAS  Google Scholar 

  • Gerloff, J., R. M. Natour & P. Rivera, 1978. Diatoms from Jordan. Willdenowia, Bd 8, H 2:261–316.

    Google Scholar 

  • Hindák, F., 1978. Sladkovodné riasy [Freswater algae]. Slovenské pedagogické nakladateľstvo, Bratislava: 724 pp.

    Google Scholar 

  • Hustedt, F., 1930. Die Süsswasserflora Deutschlands, Österreich und der Schweiz. 10, Bacillariales (Diatomeae). Gustav Fisher, Jena: 466 pp.

    Google Scholar 

  • Hustedt, F., 1959. Die Kieselalgen Deutschlands, Österreichs und der Schweiz mit Berücksichtigung der übrigen Länder Europas sowie der angrenzenden Meeresgebeite. In Dr. L. Rabenhorst’s Kryptogramen-Flora von Deutschland, Österreich und der Schweiz. Band VII. Teil 2: 845 pp.

  • Jonkers, M. J., R. Ludwig, O. De Wit, R. Pringault, G. Muyzer, H. Niemann, N. Finke & D. De Beer, 2003. Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: La Salada de Chiprana (NE Spain). FEMS Microbial Ecology 44: 175–189.

    Article  CAS  Google Scholar 

  • Komárek, J. & K. Anagnostidis, 1999. Cyanoprokaryota 1. Teil: Chroococcales. Süsswasserflora von Mitteleuropa. Gustav Fisher Jena, Stuttgart, Lübeck, Ulm: 548 pp.

    Google Scholar 

  • Komárek, J. & K. Anagnostidis, 2005. Cyanoprokaryota 2. Teil: Oscillatoriales Süsswasserflora von Mitteleuropa. Elsevier GmbH, München: 757 pp.

    Google Scholar 

  • Krammer, K., 2000. Diatoms of Europe. Volume 1: The genus Pinnularia. A.R.G. Gantner Verlag, Ruggell: 703 pp.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1985. Naviculaceae. Neue und wenig bekannte Taxa, neue Kombinationen und Synonyme sowie Bemerkungen zu einigen Gattungen. Bibliotheca Diatomologica, Band 9. J. Cramer Verlag, Berlin-Stuttgart: 232 pp.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae. 1. Teil: Naviculaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa 2/1. Gustav Fischer Verlag, Stuttgart: 876 pp.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surierellaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa 2/2. Gustav Fischer Verlag, Stuttgart: 596 pp.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991a. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa 2/3. Gustav Fischer Verlag, Stuttgart: 576 pp.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae. 4. Teil: Achnanthaceae, Kristische Ergänzungen zu Navicula (Lineolate) und Gomphonema. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süsswasserflora von Mitteleuropa 2/4. Gustav Fischer Verlag, Stuttgart: 437 pp.

    Google Scholar 

  • Lange-Bertalot, H., 2001. Diatoms of Europe. Volume 2: Navicula sensu stricto, 10 genera separated from Navicula sensu lato, Frustulia. A.R.G. Gantner Verlag, Ruggell: 526 pp.

    Google Scholar 

  • Maturrano, L., F. Santos, R. Rosselló-Mora & J. Antón, 2006. Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Applied Environmental Microbiology 72: 3887–3895.

    Article  CAS  Google Scholar 

  • Montoya, H. & S. Golubić, 1991. Morphological variability in natural populations of mat-forming cyanobacteria in the salinas of Huacho, Lima, Peru. Algological Studies 64: 423–441.

    Google Scholar 

  • Nebesářová, J., 2002. Elektronová mikroskopie pro biology. Multimediální učební texty. [Multimedial learning text] (in Czech); http://www.paru.cas.cz/lem/book/index.html.

  • Noël, D., 1982. Les Diatomees des saumures des marais salants de Salin-de-Giraud (Sud de la France). Géologie Méditerranéenne IX: 413–446.

    Google Scholar 

  • Nübel, U., F. Garcia-Pichel, E. Clavero & G. Muyzer, 2000. Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient. Environmental Microbiology 2: 217–226.

    Article  PubMed  Google Scholar 

  • Oren, A., 2000. Salts and brines. In Whitton, B. A. & M. Potts (eds), Ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht: 281–306.

    Google Scholar 

  • Oren, A., K. B. Sørensen, D. E. Canfield, A. P. Teske, D. Ionescu, A. Lipski & K. Altendorf, 2009. Microbial communities and processes within a hypersaline gypsum crust in a saltern evaporation pond (Eilat, Israel). Hydrobiologia 626(1): 15–26.

    Article  CAS  Google Scholar 

  • Prášil, O., D. Bína, H. Medová, K. Řeháková, E. Zapomělová, J. Veselá & A. Oren, 2009. Emission spectroscopy and kinetic fluorometry studies of the phototrophic microbial communities along the salinity gradient in the solar saltern evaporation ponds of Eilat, Israel. Aquatic Microbial Ecology 56: 285–296.

    Article  Google Scholar 

  • Servant-Vildary, S., J. M. Rouchyb, C. Pierred & A. Foucaultc, 1990. Marine and continental water contributions to a hypersaline basin using diatom ecology, sedimentology and stable isotdpes: an example in the Late Miocene of the Mediterranean (Hellin Basin, southern Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 79: 189–204.

    Article  Google Scholar 

  • Šmilauer, P., 1992. CANODRAW Users Guide v. 3.0. Microcomputer Power, Ithaca, New York.

    Google Scholar 

  • Solórzano, L., 1969. Determination of ammonia in natural waters by the phenol hypochlorite method. Limnology and Oceanography 14: 799–801.

    Article  Google Scholar 

  • Sørensen, K. B., D. E. Canfield & A. Oren, 2004. Salt responses of benthic microbial communities in a solar saltern (Eilat, Israel). Applied Environmental Microbiology 70: 1608–1616.

    Article  CAS  Google Scholar 

  • Sørensen, K. B., D. E. Canfield, A. P. Teske & A. Oren, 2005. Community composition of a hypersaline endoevaporitic microbial mat. Applied Environmental Microbiology 71: 7352–7365.

    Article  CAS  Google Scholar 

  • Strickland, J. D. & T. R. Parsons, 1972. A practical handbook of seawater analysis, 2nd Ed. Bulletin Fish Research Bd Canada 167: 310 pp.

  • Sylvestre, F., S. Servant-Vildary & M. Roux 2001. Diatom-based ionic concentration and salinity models from the south Bolivian Altiplano (15–23° S). Journal of Paleolimnology 25: 279–295.

    Google Scholar 

  • Ter Braak, C. J. F. & P. Šmilauer, 1998. CANOCO reference manual. Microcomputer Power, Ithaca, New York.

    Google Scholar 

  • Von Stosch, H.-A., 1974. Pleurax, seine Synthese und seine Verwendung zur Einbettung und Darstellung der Zellwände von Diatomeen, Peridineen und anderen Algen, sowie für eine neue Methode zur Elektivfärbung von Dinoflagellaten-Panzern. Archiv Protistenkunden 116: 132–141.

    Google Scholar 

  • Wieland, A. & M. Kühl, 2006. Regulation of photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat (Camargue, France) by irradiance, temperature and salinity. FEMS Microbial Ecology 55: 195–210.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Israel Salt Company in Eilat, Israel for allowing access to the salterns. This study was made during the 8th International Workshop of Group for Aquatic Primary Productivity (GAP) and Batsheva de Rothschild Seminar on Gross and Net Primary Productivity held at the Interuniversity Institute for Marine Sciences, Eilat, Israel in April 2008. We thank the Batsheva de Rothschild Foundation, Bar Ilan University, the Moshe Shilo Center for Marine Biogeochemistry, and the staff of the Interuniversity Institute for funding and logistic support. The Grant Agency of the Czech Republic project no. 206/06/0462, GA ASCR KJB 600960703, and Program Support of Targeted Research in the Academy of Sciences of CR projects no. 1QS600170504, AV0Z60050516 and 1QS500200570 (OP) provided financial assistance for this study. The research of O.P. and H.M. was also supported by institutional support concepts AV0Z50200510 and MSM6007665808.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klára Řeháková.

Additional information

Handling editor: J. M. Melack

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix 1.

Microphotographs of the diatoms found in the hypersaline ponds. (a) Nitzschia aff. N. lorenziana, (b, c) Nitzschia aff. N. acula, (d) Tabularia fasciculata, (e, f) Mastogloia pumila, (g) cf. Navicula, (h) Nitzschia aff. N. lorenziana, (i) Mastogloia pumila, (j) Navicula cf. vandamii, (k) Amphoraacutiuscula, (l) Amphora holsatica, (mΓÇôo) A. coffeaeformis, (p) A. holsatica and A. coffeaeformis, (q) Rhopalodia gibberula, (r) Tryblionella punctata, (s) Cocconeisbardawilensis. Scale bars represent 10 μm (a–c) and 5 μm (d–s). (PDF 49 kb)

Appendix 2.

Microphotographs of the cyanobacterial and diatoms found in the hypersaline ponds. (a) Leptolyngbya cf. woronichinii, (b,c) Phormidium laetevirens, (d,e) Phormidium cf. inundatum, (f) Oscillatoria margaritifera type1, (g) O. margaritifera type 2, (h) Halospirulina tapeticola type 1, (i) H. tapeticola type 2, (j) Halothece sp. single-celled, (k,l) Halothece sp. colonial, (m,n) unidentified pleurocapsacean cyanobacterium, (o) Cocconeisbardawilensis. Scale bars represent 10 μm (a–n) and 5 μm (o). (PDF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Řeháková, K., Zapomělová, E., Prášil, O. et al. Composition changes of phototrophic microbial communities along the salinity gradient in the solar saltern evaporation ponds of Eilat, Israel. Hydrobiologia 636, 77–88 (2009). https://doi.org/10.1007/s10750-009-9936-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9936-0

Keywords

Navigation