Skip to main content

Advertisement

Log in

Metal (Fe, Zn, Cu, Pb and Cd) concentration patterns in components of a macrophyte-based coastal lagoon ecosystem

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Information on the metal biological fate in macrophyte-based coastal lagoons is provided; this information can contribute to the assessment of the environmental effects of metal pollution and to the development of predictive models for rational management of coastal lagoons. Iron, Zn, Cu, Pb and Cd concentrations in the dominant invertebrate and fish species of Monolimni Lagoon, Mediterranean Sea, as well as in potential major sources for metal accumulation in these animals (water, sediments, angiosperms, seaweeds), were measured. Principal Component Analysis (PCA) was conducted using metal concentrations in invertebrates and fishes. All five metal concentrations loaded significantly on the first PCA axis; however, Zn and Cu loadings were less significant than Cd and even less than Fe and Pb ones. The samples of deposit-feeding invertebrates were separated from those of the rest of the organisms (browsing, herbivorous and carnivorous invertebrates, carnivorous gobies and muscle tissues of detritivorous mullets) along the first PCA axis. Deposit-feeding invertebrates displayed the highest Fe and Pb contents, and in general, the highest or comparatively high Cd, Zn and Cu ones. Carnivorous gobies showed comparatively high Zn contents and carnivorous shrimps the highest Cu ones, while muscle tissues of detritivorous mullets had low metal loads. In addition, there was no essential increase in metal concentrations corresponding to the increasing trophic level (autotrophs, to herbivores, to carnivores). Our findings suggest that (a) the variability in Fe, Pb and Cd contents in invertebrates and gobies depends at least to some extent on interspecific differences in feeding habits—deposit feeders accumulated the highest metal amounts probably due to high rates of uptake from sediments, (b) the variability in Zn and Cu concentrations in these organisms depends also on other interspecific differences apart from those in feeding habits, (c) metal accumulation in mullet muscle tissues does not depend markedly on feeding habits and (d) the trophic transfer of macrophyte-bound metals to the coastal lagoon food web is of relatively minor importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdennour, C., 1997. Copper, zinc and haemocyanin concentrations in four caridean decapods (Crustacea): size relationships. Hydrobiologia 346: 1–9.

    Article  CAS  Google Scholar 

  • Amiard, J. C., C. Amiard-Triquet, B. Berthet & C. Metayer, 1987. Comparative study of the patterns of bioaccumulation of essential (Cu, Zn) and nonessential (Cd, Pb) trace metals in various estuarine and coastal organisms. Journal of Experimental Marine Biology and Ecology 106: 73–89.

    Article  CAS  Google Scholar 

  • Barwick, M. & W. Maher, 2003. Biotransference and biomagnification of selenium, copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Marine Environmental Research 56: 471–502.

    Article  PubMed  CAS  Google Scholar 

  • Bat, L., D. Raffaelli & I. L. Marr, 1998. The accumulation of copper, zinc and cadmium by the amphipod Corophium volutator (Pallas). Journal of Experimental Marine Biology and Ecology 223: 167–184.

    Article  CAS  Google Scholar 

  • Bendoricchio, G., G. Coffaro & C. de Marchi, 1994. A trophic model for Ulva rigida in the lagoon of Venice. Ecological Modeling 75/76: 485–496.

    Article  Google Scholar 

  • Benejam, L., E. Aparicio, M. J. Vargas, A. Vila-Gispert & E. García-Berthou, 2008. Assessing fish metrics and biotic indices in a Mediterranean stream: effects of uncertain native status of fish. Hydrobiologia 603: 197–210.

    Article  Google Scholar 

  • Bernds, D., D. Wübben & G. P. Zauke, 1998. Bioaccumulation of trace metals in polychaetes from the German Wadden Sea: evaluation and verification of toxicokinetic models. Chemosphere 37: 2573–2587.

    Article  CAS  Google Scholar 

  • Blackmore, G., 2001. Interspecific variation in heavy metal body concentrations in Hong Kong marine invertebrates. Environmental Pollution 114: 303–311.

    Article  PubMed  CAS  Google Scholar 

  • Bordin, G., J. McCourt, F. C. Raposo & A. Rodriguez, 1996. Trace metals in the marine bivalve Macoma balthica in the Westerschelde estuary, The Netherlands. Part 3: variability of the role of cytosol in metal uptake by the clams. The Science of the Total Environment 180: 241–255.

    Article  PubMed  CAS  Google Scholar 

  • Boubonari, T., P. Malea & T. Kevrekidis, 2008. The green seaweed Ulva rigida as a bioindicator of metals (Zn, Cu, Pb and Cd) in a low-salinity coastal environment. Botanica Marina 51: 472–484.

    Article  CAS  Google Scholar 

  • Bryan, G. W., 1979. Bioaccumulation of marine pollutants. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences 286: 483–505.

    Article  CAS  Google Scholar 

  • Bryan, G. W. & P. E. Gibbs, 1980. Metals in nereid polychaetes: the contribution of metals in the jaws to the total body burden. Journal of Marine Biology Association U.K. 60: 641–654.

    Article  CAS  Google Scholar 

  • Caliceti, M., E. Argese, A. Sfriso & B. Pavoni, 2002. Heavy metal contamination in the seaweeds of the Venice lagoon. Chemosphere 47: 443–454.

    Article  PubMed  CAS  Google Scholar 

  • Capone, W., C. Mascia, M. Porcu & M. L. Tagliasacchi Masala, 1983. Uptake of lead and chromium by primary producers and consumers in a polluted lagoon. Marine Pollution Bulletin 14: 97–102.

    Article  CAS  Google Scholar 

  • Casagranda, C., M. S. Dridi & C. F. Boudouresque, 2006. Abundance, population structure and production of macroinvertebrate shredders in Mediterranean brackish lagoon, Lake Ichkeul, Tunisia. Estuarine, Coastal and Shelf Science 66: 437–446.

    Article  Google Scholar 

  • Cheggour, M., A. Chafik, W. J. Langston, G. R. Burt, S. Benbrahim & H. Texier, 2001. Metals in sediments and the edible cockle Cerastoderma edule from two Moroccan Atlantic lagoons: Moulay Bou Selham and Sidi Moussa. Environmental Pollution 115: 149–160.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. B., 2002. Marine Pollution. Oxford University Press, New York.

    Google Scholar 

  • Fernandes, H. M., E. D. Bidone, L. H. S. Veiga & S. R. Patchineelam, 1994. Heavy-metal pollution assessment in the coastal lagoons of Jacarepaguá, Rio de Janeiro, Brazil. Environmental Pollution 85: 259–264.

    Article  PubMed  CAS  Google Scholar 

  • Fialkowski, W., E. Fialkowska, B. D. Smith & P. S. Rainbow, 2003. Biomonitoring survey of trace metal pollution in streams of a catchment draining a zinc and lead mining area of upper Silesia, Poland using the amphipod Gammarus fossarum. International Review of Hydrobiologia 88: 187–200.

    Article  CAS  Google Scholar 

  • Gouvis, N. & A. Koukouras, 1993. Macrozoobenthic assemblages of the Evros Delta (North Aegean Sea). Internationale Revue der gesamten Hydrobiologie und Hydrographie 78: 59–82.

    Article  Google Scholar 

  • Kalay, M., Ö. Ay & M. Canli, 1999. Heavy metal concentrations in fish tissues from the northeast Mediterranean Sea. Bulletin of Environmental Contamination and Toxicology 63: 673–681.

    Article  PubMed  CAS  Google Scholar 

  • Kennish, M. J., 1997. Practical Handbook of Estuarine and Marine Pollution. CRC Press, Boca Raton.

    Google Scholar 

  • Kevrekidis, T., 2004. Seasonal variation of the macrozoobenthic community structure at low salinities in a Mediterranean lagoon (Monolimni Lagoon, Northern Aegean). International Review of Hydrobiology 89: 407–425.

    Article  Google Scholar 

  • Kevrekidis, T., A. K. Kokkinakis & A. Koukouras, 1990. Some aspects of the biology and ecology of Knipowitschia caucasica (Teleostei: Gobiidae) in the Evros Delta (Northern Aegean Sea). Helgoländer Meeresuntersuchungen 44: 173–187.

    Article  Google Scholar 

  • Kjerfve, B., 1994. Coastal lagoon processes. In Kjerfve, B. (ed.), Coastal Lagoon Processes. Elsevier, Amsterdam: 1–7.

    Chapter  Google Scholar 

  • Knoppers, B., 1994. Aquatic primary production in coastal lagoons. In Kjerfve, B. (ed.), Coastal Lagoon Processes, Vol. 2. Elsevier, Amsterdam: 243–286.

    Chapter  Google Scholar 

  • Lacerda, L. D., 1994. Biogeochemistry of heavy metals in coastal lagoons. In Kjerfve, B. (ed.), Coastal Lagoon Processes. Elsevier, Amsterdam: 221–241.

    Chapter  Google Scholar 

  • Malea, P., T. Kevrekidis & A. Mogias, 2004. Annual versus perennial growth cycle in Ruppia maritima L.: temporal variation in population characteristics in Mediterranean lagoons (Monolimni and Drana Lagoons, Northern Aegean Sea). Botanica Marina 47: 357–366.

    Article  Google Scholar 

  • Marmolejo-Rivas, C. & F. Páez-Osuna, 1990. Trace metals in tropical coastal lagoon bivalves, Mytella strigata. Bulletin of Environmental Contamination and Toxicology 45: 545–551.

    Article  PubMed  CAS  Google Scholar 

  • McLusky, D. S. & M. Elliott, 2004. The Estuarine Ecosystem. Ecology, Threats and Management. Oxford University Press Inc., New York.

    Google Scholar 

  • Möller, P., L. Pihl & R. Rosenberg, 1985. Benthic faunal energy flow and biological interaction in some shallow marine soft bottom habitats. Marine Ecology Progress Series 27: 109–121.

    Article  Google Scholar 

  • Niencheski, L. F., H. L. Windom, B. Baraz, D. Wells & R. Smith, 2001. Mercury in fish from Patos and Mirim Lagoons, Southern Brazil. Marine Pollution Bulletin 42: 1403–1406.

    Article  PubMed  CAS  Google Scholar 

  • Otchere, F. A., C. R. Joiris & L. Holsbeek, 2003. Mercury in the bivalves Anadara (Senilia) senilis, Perna perna and Crassostrea tulipa from Ghana. The Science of the Total Environment 304: 369–375.

    Article  PubMed  CAS  Google Scholar 

  • Panayotidis, P. & H. Florou, 1994. Copper, cadmium and iron in marine organisms in a eutrophic estuarine area (Amvrakikos Gulf, Ionian Sea, Greece). Toxicological and Environmental Chemistry 45: 211–219.

    Article  CAS  Google Scholar 

  • Peres-Neto, P. R., D. A. Jackson & K. M. Somers, 2003. Giving meaningful interpretation to ordination axes: assessing loading significance in principal component analysis. Ecology 84: 2347–2363.

    Article  Google Scholar 

  • Peres-Neto, P. R., D. A. Jackson & K. M. Somers, 2005. How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Computational Statistics & Data Analysis 49: 974–997.

    Article  Google Scholar 

  • Pérez, U. J., B. Jiménez, W. Delgado & C. J. Rodríguez-Sierra, 2001. Heavy metals in the false mussel, Mytilopsis domingensis, from two tropical estuarine lagoons. Bulletin of Environmental Contamination and Toxicology 66: 206–213.

    Article  PubMed  Google Scholar 

  • R Development Core Team, 2006. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 [available on internet at http://www.r-project.org].

  • Reinfelder, J. R., N. S. Fisher, S. N. Luoma, J. W. Nichols & W. X. Wang, 1998. Trace element trophic transfer in aquatic organisms: a critique of the kinetic model approach. The Science of the Total Environment 219: 117–135.

    Article  PubMed  CAS  Google Scholar 

  • Scaps, P., 2002. A review of the biology, ecology and potential use of the common ragworm Hediste diversicolor (O.F. Müller) (Annelida: Polychaeta). Hydrobiologia 470: 203–218.

    Article  Google Scholar 

  • Sfriso, A., A. Marcomini & M. Zanette, 1995. Heavy metals in sediments, SPM and phytozoobenthos of the lagoon of Venice. Marine Pollution Bulletin 30: 116–124.

    Article  CAS  Google Scholar 

  • Storelli, M. M. & G. O. Marcotrigiano, 2001. Heavy metal monitoring in fish, bivalve molluscs, water, and sediments from Varano Lagoon, Italy. Bulletin of Environmental Contamination and Toxicology 66: 365–370.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W. X. & N. S. Fisher, 1999. Delineating metal accumulation pathways for marine invertebrates. The Science of the Total Environment 237(238): 459–472.

    Article  Google Scholar 

  • White, S. L. & P. S. Rainbow, 1985. On the metal requirements for copper and zinc in molluscs and crustaceans. Marine Environmental Research 16: 215–229.

    Article  CAS  Google Scholar 

  • Zingde, M. D., S. Y. S. Singbal, C. F. Moraes & C. V. G. Reddy, 1976. Arsenic, copper, zinc and manganese in the marine flora and fauna of coastal and estuarine waters around Goa. Indian Journal of Marine Sciences 5: 212–217.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr A. Mogias and Ms V. Kalpia for sampling and laboratory assistance, to Prof. H. W. Jäger and Dr H. W. Koyro (Institute of Plant Ecology, University of Giessen, Germany) for their support with the AAS analyses, to Prof. S. Haritonidis (Institute of Botany, University of Thessaloniki, Hellas) for his valuable suggestions, to Dr A. Markos (Department of Applied Mathematics, University of Macedonia, Hellas) for assistance with the package stats for R and to Dr C. Arvanitidis (Institute of Marine Biology of Crete, Hellas) for the critical reading of the manuscript. We would also like to thank three anonymous referees for their valuable comments on a previous version of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodoros Kevrekidis.

Additional information

Handling editor: L. M. Bini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boubonari, T., Kevrekidis, T. & Malea, P. Metal (Fe, Zn, Cu, Pb and Cd) concentration patterns in components of a macrophyte-based coastal lagoon ecosystem. Hydrobiologia 635, 27–36 (2009). https://doi.org/10.1007/s10750-009-9858-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9858-x

Keywords

Navigation