, Volume 635, Issue 1, pp 1–14 | Cite as

Seasonal water chemistry and diatom changes in six boreal lakes of the Laurentian Mountains (Québec, Canada): impacts of climate and timber harvesting

  • Sonja HausmannEmail author
  • Reinhard Pienitz
Primary research paper


The physical and chemical variabilities as well as the distribution of diatoms of six boreal lakes in the Laurentian Mountains (southern Québec, Canada) were studied. The lakes are located along an altitudinal gradient and were sampled at a biweekly resolution from May through October, 2002. In general, we found later onset and weaker lake stratification under colder climates. Lake circulation and SiO2 are strongly correlated and together significantly explain the distribution of diatoms of the individual lakes. Diatoms that accumulated in the sediment traps were mostly composed of benthic species, suggesting resuspension. However, diatom flux and lake circulation were not significantly correlated, the diatom assemblages in the sediment traps were similar in two consecutive years, and species–environment relationships were comparable among lakes, which indicates that the effects of resuspension were minimal. In addition, we found that one lake was more productive due to forest logging. The forest in the catchment of Lake Maxi was entirely clear-cut shortly prior to our sampling. Mean total phosphorus, dissolved organic carbon, and chlorophyll a concentrations were significantly higher when compared to the other five study lakes. This study seeks to improve our understanding of how diatoms in boreal lakes respond to climate change and forest clear-cut.


Shallow boreal lakes Water chemistry Seasonality Laurentian Mountains Sediment traps Diatoms Multivariate statistics Climate Forest clear-cut 



This research was supported by a Leopoldina (# BMBF-LPD 9901) stipend from the Academy of Natural Sciences (Federal Ministry of Education and Research, Germany), and a Swiss National Science Foundation (SNSF) postdoctoral fellowship to S. Hausmann, and a Natural Sciences and Engineering Research Council (NSERC) of Canada grant to R. Pienitz. We are grateful to Centre d’études nordiques of Université Laval for logistic support and thank C. Zimmermann for field and laboratory assistance, and D. Muir and X. Wang for water chemistry analyses. This work could only be realized with the field assistance of T. Menninger, L. Laperrière, I. Laurion, D. Köster, K. Roberge, É. Saulnier-Talbot and M. Touazi. We would like to thank M. Rautio, T. Menninger, R. Keveren and J. Dixon for feedback on the manuscript. The manuscript would not exist in its present form without the valuable comments of J. Black. In addition, we would like to thank the two reviewers for their constructive comments.


  1. Allard, M. & R. Fortier, 1990. The thermal regime of a permafrost body at Mont du Lac des Cygnes, Québec. Canadian Journal of Earth Sciences 27: 694–697.CrossRefGoogle Scholar
  2. Anderson, N. J., 2000. Diatoms, temperature and climate change. European Journal of Phycology 35: 307–314.Google Scholar
  3. Battarbee, R. W. & M. J. Kneen, 1982. The use of electronically counted microspheres in absolute diatom analysis. Limnology and Oceanography 27: 184–188.Google Scholar
  4. Birks, H. J. B., 1995. Quantitative Palaeoenvironmental Reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical Modelling of Quaternary Science Data. Quaternary Research Association, Cambridge: 161–254.Google Scholar
  5. Bradbury, J. P., 1988. A climatic-limnologic model of diatom succession for paleolimnological interpretation of varved sediments at Elk Lake, Minnesota. Journal of Paleolimnology 1: 115–131.Google Scholar
  6. Camburn, K. E. & J. C. Charles, 2000. Diatoms of low-alkalinity lakes in the northeastern United States. The Academy of Natural Sciences of Philadelphia. Philadelphia, Philadelphia.Google Scholar
  7. Cameron, N. G., 1995. The representation of diatom communities by fossil assemblages in a small acid lake. Journal of Paleolimnology 14: 185–223.CrossRefGoogle Scholar
  8. Carignan, R., P. D’Arcy & S. Lamontagne, 2000. Comparative impacts of fire and forest harvesting on water quality in Boreal Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences 57: 105–117.CrossRefGoogle Scholar
  9. Cole, J. J., R. W. Howarth, S. S. Nolan & R. Marino, 1986. Sulfate inhibition of molybdate assimilation by planktonic algae and bacteria: some implications for the aquatic nitrogen cycle. Biogeochemisty 2: 179–196.CrossRefGoogle Scholar
  10. Desjardins, R. & R. Monderie, 1999. Forest Alert, National Film Board of Canada, 68 min 3 sec.Google Scholar
  11. Duguay, C. R., T. D. Prowse, B. R. Bonsal, R. D. Brown, M. P. Lacroix & P. Ménard, 2006. Recent trends in Canadian lake ice cover. Hydrological Processes 20(4): 781–801.CrossRefGoogle Scholar
  12. Environment Canada, 1994. Manual of Analytical Methods, Vol. 1. Major Ions and Nutrients. Environmental Conservation Service—ECD. Canadian Communications Group, Toronto.Google Scholar
  13. Fallu, M.-A., N. Allaire & R. Pienitz, 2000. Freshwater Diatoms from Northern Québec and Labrador (Canada), Bibliotheca Diatomologica, Vol. 45. J. Cramer, Berlin/Stuttgart.Google Scholar
  14. Happey, C. M., 1970. Some physico-chemical investigations of stratification in Abbot’s Pool, Somerset: the distribution of some dissolved substances. The Journal of Ecology 58(3): 621–634.CrossRefGoogle Scholar
  15. Hausmann, S. & R. Pienitz, 2007. Seasonal climate inferences from high-resolution modern diatom data along a climate gradient: a case study. Journal of Paleolimnology 38: 73–96.CrossRefGoogle Scholar
  16. Heiri, O. & A. F. Lotter, 2003. 9000 years of chironomid assemblage dynamics in an Alpine lake: long-term trends, sensitivity to disturbance, and resilience of the fauna. Journal of Paleolimnology 30: 273–289.CrossRefGoogle Scholar
  17. Hughes, M. K. & C. M. Ammann, 2009. The future of the past—an earth system framework for high resolution paleoclimatology: editorial essay. Climatic Change 94: 247–259.CrossRefGoogle Scholar
  18. Hustedt, F., 1923. Süsswasser-Diatomeen Deutschlands, 4th ed. Frankh’sche Verlagsbuchhandung, Stuttgart.Google Scholar
  19. IPCC, 2007. Summary for Policymakers. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York.Google Scholar
  20. Jeffrey, S. W. & N. A. Welschmeyer, 1997. Spectrophotometric and fluorimetric equations in common use in oceanography. In Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright (eds), Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. UNESCO, Paris: 597–621.Google Scholar
  21. Joynt, E. H. & A. P. Wolfe, 2001. Paleoenvironmental inference models from sediment diatom assemblages in Baffin Island lakes (Nunavut, Canada) and reconstruction of summer water temperature. Canadian Journal of Fisheries and Aquatic Sciences 58: 1222–1243.CrossRefGoogle Scholar
  22. Kilham, P., S. S. Kilham & R. E. Hecky, 1986. Hypothesized resource relationships among African planktonic diatoms. Limnology and Oceanography 31: 1169–1181.Google Scholar
  23. Korhola, A., S. Sorvari, M. Rautio, P. G. Appleby, J. A. Dearing, Y. Hu, N. Rose, A. Lami & N. G. Cameron, 2002. A multi-proxy analysis of climate impacts on the recent development of subarctic Lake Saanajärvi in Finnish Lapland. Journal of Paleolimnology 28: 59–77.CrossRefGoogle Scholar
  24. Köster, D. & R. Pienitz, 2006. Seasonal diatom variability and paleolimnological inferences—a case study. Journal of Paleolimnology 35: 395–416.CrossRefGoogle Scholar
  25. Köster, D., R. Pienitz, B. B. Wolfe, S. Barry, D. R. Foster & S. S. Dixit, 2005. Paleolimnological assessment of human-induced impacts on Walden Pond (Massachusetts, USA) using diatoms and stable isotopes. Aquatic Ecosystem Health and Management 8: 117–131.CrossRefGoogle Scholar
  26. Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae. 1. Teil: Naviculaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, Band 2/1. Gustav Fischer Verlag, Stuttgart, New York.Google Scholar
  27. Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, Band 2/2. Gustav Fischer Verlag, Jena.Google Scholar
  28. Krammer, K. & H. Lange-Bertalot, 1991a. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, Band 2/2. Gustav Fischer Verlag, Jena.Google Scholar
  29. Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae. 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, Gesamtliteraturverzeichnis Teil 1-4. In Ettl, H., G. Gärtner, J. Gerloff, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa, Band 2/4. Gustav Fischer Verlag, Stuttgart, Jena.Google Scholar
  30. Laird, K., B. Cumming & R. Nordin, 2001. A regional paleolimnological assessment of the impact of clearcutting on lakes from the west coast of Vancouver Island, British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 58: 479–491.CrossRefGoogle Scholar
  31. Larsson, U., S. Blomqvist & B. Abrahamsson, 1986. A new sediment trap system. Marine Ecology Progress Series 31: 205–207.CrossRefGoogle Scholar
  32. Lotter, A. F. & C. Bigler, 2000. Do diatoms in the Swiss Alps reflect the length of ice-cover? Aquatic Sciences 62: 125–141.CrossRefGoogle Scholar
  33. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. Journal of Paleolimnology 18: 395–420.CrossRefGoogle Scholar
  34. Lotter, A. F., R. Pienitz & R. Schmidt, 1999. Diatoms as indicators of environmental change near the arctic and alpine treeline. In: Stoermer E. F. & J. P. Smol (eds), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University, Cambridge, New York, Melbourne: 469 pp.Google Scholar
  35. Lund, J. W. G., 1950. Studies on Asterionella. W. Nutrient depletion and the spring maximum. Journal of Ecology 38: 1–5.CrossRefGoogle Scholar
  36. Marino, R., R. W. Howarth, J. Shamess & E. E. Prepas, 1990. Molybdenum and sulfate as controls on the abundance of nitrogen-fixing cyanobacteria in saline lakes in Alberta. Limnology and Oceanography 35(2): 245–259.CrossRefGoogle Scholar
  37. Nonaka, T., T. Matsunaga & A. Hoyano, 2007. Estimating ice breakup dates on Eurasian lakes using water temperature trends and threshold surface temperatures derived from MODIS data. International Journal of Remote Sensing 28(10): 2163–2179.CrossRefGoogle Scholar
  38. Nusch, E. A., 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Archiv für Hydrobiology 14: 14–36.Google Scholar
  39. Pienitz, R. & J. P. Smol, 1993. Diatom assemblages and their relationship to environmental variables in lakes from the boreal forest-tundra ecotone near Yellowknife, Northwest Territories, Canada. Hydrobiologia 269/270: 391–404.CrossRefGoogle Scholar
  40. Pienitz, R., J. P. Smol & H. J. B. Birks, 1995. Assessment of freshwater diatoms as quantitative indicators of past climatic change in the Yukon and Northwest Territories, Canada. Journal of Paleolimnology 13: 21–49.CrossRefGoogle Scholar
  41. Pienitz R., M. S. V. Douglas & J. P. Smol, 2004. Long-term Environmental Change in Arctic and Antarctic Lakes. Springer, Dordrecht: 562 pp.Google Scholar
  42. Planas, D., M. Desrosiers, S. Groulx, S. Paquet & R. Carignan, 2002. Pelagic and benthic algal responses in eastern Canadian Boreal Shield lakes following harvesting and wildfires. Canadian Journal of Fisheries and Aquatic Sciences 57: 136–145.CrossRefGoogle Scholar
  43. Reynolds, C. S., 1993. Scales of disturbance and their role in phytoplankton ecology. Hydrobiologia 249: 157–171.CrossRefGoogle Scholar
  44. Salonen, K., L. Arvola & M. Rask, 1984. Autumnal and vernal circulation of small forest lakes in southern Finland. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 22: 103–107.Google Scholar
  45. Sawai, Y., 2001. Distribution of living and dead diatoms in tidal wetlands of northern Japan: relations to taphonomy. Palaeogeography, Palaeoclimatolology and Palaeoecology 173: 125–141.CrossRefGoogle Scholar
  46. Schindler, D. W., S. E. Bayley, B. R. Parker, K. G. Beaty, D. R. Cruikshank, E. J. Fee, E. U. Schindler & M. P. Stainton, 1996. The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, Northwestern Ontario. Limnology and Oceanography 41: 1004–1017.Google Scholar
  47. Schmidt, R., S. Wunsam, U. Brosch, J. Fott, A. Lami, H. Löffler, A. Marchetto, H. W. Müller, M. Prazaková & B. Schwaighofer, 1998. Late and post-glacial history of meromictic Längsee (Austria), in respect to climate change and anthropogenic impact. Aquatic Sciences 60: 56–88.CrossRefGoogle Scholar
  48. Smol, J. P., 1988. Paleoclimate proxy data from freshwater arctic diatoms. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 23: 837–844.Google Scholar
  49. Smol, J. P., A. P. Wolfe, H. J. Birks, M. S. Douglas, V. J. Jones, A. Korhola, R. Pienitz, K. Rühland, S. Sorvari, D. Antoniades, S. J. Brooks, M.-A. Fallu, M. Hughes, B. E. Keatley, T. E. Laing, N. Michelutti, L. Nazarova, M. Nyman, A. M. Paterson, B. Perren, R. Quinlan, M. Rautio, E. Saulnier-Talbot, S. Siitonen, N. Solovieva & J. Weckström, 2005. Climate-driven regime shifts in the biological communities of arctic lakes. Proceedings of the National Academy of Sciences of the United States of America 102(12): 4397–4402.PubMedCrossRefGoogle Scholar
  50. Solovieva, N., V. Jones, J. H. B. Birks, P. Appleby & L. Nazarova, 2008. Diatom responses to 20th century climate warming in lakes from the northern Urals, Russia. Palaeogeography, Palaeoclimatology, Palaeoecology 259(2–3): 96–106.CrossRefGoogle Scholar
  51. Sorvari, S., A. Korhola & R. Thompson, 2002. Lake diatom response to recent Arctic warming in Finnish Lapland. Global Change Biology 8(2): 171–181.CrossRefGoogle Scholar
  52. Stoermer, E. F. & J. P.Smol, 1999. The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University, Cambridge, New York, Melbourne: 469 pp.Google Scholar
  53. ter Braak, C. J. F., 1986. Canonical Correspondence Analysis: A New Eigenvector. Technique for Multivariate Direct Gradient Analysis. Ecology 67: 1167–1179.CrossRefGoogle Scholar
  54. ter Braak, C. J. F. & P. Šmilauer, 1998. CANOCO Reference Manual and User’s Guide to CANOCO for Windows: Software for Canonical Community Ordination (Version 4). Microcomputer Power, Ithaca, NY.Google Scholar
  55. Tilman, D., 1982. Resource Competition and Community Structure. Princeton University Press, Princeton.Google Scholar
  56. Vollenweider, R. A., 1968. Scientific Fundamentals of the Eutrophication of Lakes and Flowing Waters, with Particular Reference to Nitrogen and Phosphorus as Factor in Eutrophication. OECD, Paris.Google Scholar
  57. Wetzel, R. G., 2001. Limnology, 3rd ed. Academic Press, San Diego.Google Scholar
  58. Wick, L., W. O. van der Knaap, J. F. N. Leeuwen & A. F. Lotter, 2003. Holocene vegetation development in the catchment of Sägistalsee (1935 m a.s.l.), a small lake in the Swiss Alps. Journal of Paleolimnology 30: 261–272.CrossRefGoogle Scholar
  59. Wunsam, S. & R. Schmidt, 1995. A diatom-phosphorus transfer function for Alpine and prealpine lakes. Memorie dell’Istituto Italiano di Idrobiologia 53: 85–99.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of GeosciencesUniversity of ArkansasFayettevilleUSA
  2. 2.Aquatic Paleoecology Laboratory, Département de Géographie, Centre d’études nordiquesUniversité LavalQuebecCanada

Personalised recommendations