Skip to main content

Advertisement

Log in

Long-term declining trend of zooplankton biomass in the Tropical Atlantic

  • Short research note
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We report evidences that the zooplankton biomass in the tropical Atlantic has declined with an almost 10-fold drop from the 1950s to 2000. The results of the multiple regression analysis showed that the decline in zooplankton biomass was positively related to the NAO-index and to phosphate concentration. We also found that the depth of the thermocline has decreased over the period of our investigation. Thus, the decline we report in zooplankton biomass may be related to the combined effect of two phenomena driven by global temperature increase: (1) the widening of the distributional range of tropical species due to the expansion of the ‘tropical belt’ and (2) a decrease in primary production resulting from the thinning of the thermocline. The decline of zooplankton biomass we report suggests that global warming of the ocean may be altering tropical food webs, and through them, it may also indirectly impact tropical oceans biogeochemical cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Barry, J. P., C. H. Baxter, R. D. Sagarin & S. E. Gilman, 1995. Climate-related, long-term faunal changes in a California rocky intertidal community. Science 267: 672–675.

    Article  PubMed  CAS  Google Scholar 

  • Bates, N. R., A. C. Pequignet, R. Johnson & N. Gruber, 2002. A short term sink for atmospheric CO2 in subtropical mode water of the North Atlantic Ocean. Nature 420: 489–493.

    Article  PubMed  CAS  Google Scholar 

  • Beaugrand, G., 2004. The North Sea regime shift: evidence, causes, mechanisms and consequences. Progress in Oceanography 60: 245–262.

    Article  Google Scholar 

  • Beaugrand, G., P. C. Reid, F. Ibañez, J. A. Lindley & M. Edwards, 2002. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296: 1692–1694.

    Article  PubMed  CAS  Google Scholar 

  • Behrenfeld, M. J. & P. G. Falkowski, 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography 42: 1–20.

    Article  CAS  Google Scholar 

  • Behrenfeld, M. J., R. T. O’Malley, D. A. Siegel, C. R. McClain, J. L. Sarmiento, G. C. Feldman, A. J. Milligan, P. G. Falkowski, R. M. Letelier & E. S. Boss, 2006. Climate-driven trends in contemporary ocean productivity. Nature 44: 752–755.

    Article  CAS  Google Scholar 

  • Campos, C. N., M. Goes, A. S. Taschetto & I. Wainer, 2001. Subtle Signals Newsletter 1. http://www.decvar.org/newsletter/vol1.1/wainer.html.

  • Christian, J. R. & R. Murtugudde, 2003. Tropical Atlantic variability in a coupled physical-biogeochemical ocean model. Deep-Sea Research II 50: 2947–2969.

    Article  CAS  Google Scholar 

  • Cushing, D. H., 1975. Marine ecology and fisheries. Cambridge University Press, London: 278pp.

  • Doney, S. C., 2006. Oceanography: plankton in a warmer world. Nature 444: 695–696.

    Article  PubMed  CAS  Google Scholar 

  • Finenko, Z. Z., S. A. Piontkovski, R. Williams & A. V. Mishonov, 2003. Variability of phytoplankton and mesozooplankton biomass in the subtropical and tropical Atlantic Ocean. Marine Ecology Progress Series 250: 125–144.

    Article  CAS  Google Scholar 

  • Fromentin, J.-M. & B. Planque, 1996. Calanus and environment in the eastern North Atlantic. Influence of the North Atlantic Oscillation on C. finmarchicus and C. helgolandicus. Marine Ecology Progress Series 134: 111–118.

    Article  Google Scholar 

  • Gordeeva, K. T. & A. A. Shmeleva, 1971. The distribution of zooplankton abundance and biomass over the Tropical Atlantic area. In Greze, V. N. (ed.), Plankton and Biological Productivity of the Tropical Atlantic. Naukova Dumka, Kiev: 174–214 (in Russian).

    Google Scholar 

  • Greze, V. N. (ed.), 1984. The Bioproductive System of the Macroscale Oceanic Gyre. Naukova Dumka, Kiev: 1–264.

    Google Scholar 

  • Herbland, A., R. LeBorne, A. LeBouteller & B. Voituriez, 1983. Structure hydrologique et production primaire dans l’Atlantique tropical oriental. Océanographie Tropicale 18(2): 249–293.

    CAS  Google Scholar 

  • Hoerling, M. P., J. W. Hurrell & T. Xu, 2001. Tropical origins for recent North Atlantic climate change. Science 292: 90–92.

    Article  PubMed  CAS  Google Scholar 

  • Isla, J. A., M. Llope & R. Anadon, 2004. Size-fractioned mesozooplankton biomass, metabolism and grazing along a 50°N-30°S transect of the Atlantic Ocean. Journal of Plankton Research 26(11): 1301–1313.

    Article  CAS  Google Scholar 

  • Latif, M. & A. Grötzner, 2000. The equatorial Atlantic oscillation and its response to ENSO climate dynamics. Climate Dynamics 16: 213–218.

    Article  Google Scholar 

  • Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia & A. V. Mishonov, 2009. Global ocean heat content 1955-2008 in light of recently revealed instrumentation problems. Geophysical Research Letters 36: L07608. doi:10.1029/2008GL037155.

    Article  Google Scholar 

  • Longhurst, A. R., 1985. Relationship between diversity and vertical structure of the upper ocean. Deep-Sea Research 32: 1535–1570.

    Article  Google Scholar 

  • Longhurst, A. R., 1998. Ecological Geography of the Sea. Academic Press, San Diego: 398pp.

    Google Scholar 

  • McGowan, J. A., D. B. Chelton & A. Conversi, 1996. Plankton patterns, climate, and change in the California Current. CalCOFI Reports 37: 45–68.

    Google Scholar 

  • Oschlies, A., 2001. NAO-induced long-term changes in nutrient supply to the surface waters of the north Atlantic. Geophysical Research Letters 28(9): 1751–1754.

    Article  CAS  Google Scholar 

  • Piontkovski, S. A. & M. R. Landry, 2003. Copepod species diversity and climate variability in the tropical Atlantic Ocean. Fisheries Oceanography 12(45): 352–359.

    Article  Google Scholar 

  • Piontkovski, S. A., R. Williams, S. Ignatyev, A. Boltachev & M. Chesalin, 2003. Structural-functional relationships in the pelagic community of the eastern tropical Atlantic Ocean. Journal Plankton Research 25(9): 1021–1034.

    Article  CAS  Google Scholar 

  • Piontkovski, S. A., T. D. O’brien, S. F. Umani, E. G. Krupa, T. S. Stuge, K. S. Balymbetov, O. V. Grishaeva & A. G. Kasymov, 2006. Zooplankton and the North Atlantic Oscillation: a basin-scale analysis. Journal Plankton Research 28: 1039–1046.

    Article  Google Scholar 

  • Vinogradov, M. E. & E. A. Shushkina, 1987. The functioning of the plankton communities of the ocean epipelagic (Funktcionirovanie Planktonnyih Soobchestv Epipelagiali Okeana). Nauka, Moskow: 240pp (in Russian).

  • Wiafe, G., H. B. Yaqub, M. A. Mensah & C. L. J. Frid, 2008. Impact of climate change on long-term zooplankton biomass in the upwelling region of the Gulf of Guinea. ICES Journal of Marine Science 65: 318–324.

    Article  Google Scholar 

  • Wiebe, P. H., 1988. Functional regression equations for zooplankton displacement volume, wet weight, dry weight, and carbon: a correction. Fisheries Bulletin 86: 833–835.

    Google Scholar 

  • WOD, 2001. World Ocean 2001 Atlas. Objective Analyses and Statistics. U.S. Department of Commerce, NOAA, Silver Spring, MD.

    Google Scholar 

  • Wolter, K., 1987. The Southern Oscillation in surface circulation and climate over the tropical Atlantic, eastern Pacific, and Indian oceans as captured by cluster analysis. Journal of Climate Applied Meteorology 26: 540–558.

    Article  Google Scholar 

  • Wolter, K., & M. S. Timlin, 1993. Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proceedings of the 17th Climate Diagnostics Workshop, Norman, OK, NOAA/N MC/CAC, NSSL, Oklahoma Climatological Survey, CIMMS and the School of Meteorology, University of Oklahoma: 52–57.

  • Woodd-Walker, R. S., 2001. Spatial distributions of copepod genera along the Atlantic Meridional Transect. Hydrobiologia 453(454): 161–170.

    Article  Google Scholar 

  • Worm, B., M. Sandow, A. Oschlies, H. K. Lotze & R. A. Myers, 2005. Global patterns of predator diversity in the open oceans. Science 309: 1365–1369.

    Article  PubMed  CAS  Google Scholar 

  • Zuyev, G. V., O. P. Ovcharov & V. N. Nikolski, 1990. The productivity of the equatorial Atlantic (Produktivnost Ekvatorialnoi Atlantiki). In Zuyev, G. V. (ed.). Naukova Dumka, Kiev: 228pp (in Russian).

Download references

Acknowledgements

We thank L. Galkovskaya, S. Ignatyev, R. P. Harris, and J. A. Isla for providing the FSU and UK/AMT data on physical–chemical parameters and zooplankton. We also thank the British Oceanographic data Centre for the AMT data. Abigail McQuatters-Gollop is also gratefully acknowledged for her help with the preparation of Figure 1. This paper represents contribution number 182 to the AMT program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Piontkovski.

Additional information

Handling editor: S. I. Dodson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piontkovski, S.A., Castellani, C. Long-term declining trend of zooplankton biomass in the Tropical Atlantic. Hydrobiologia 632, 365–370 (2009). https://doi.org/10.1007/s10750-009-9854-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9854-1

Keywords

Navigation