Skip to main content
Log in

Leaf abundance and phenolic concentrations codetermine the selection of case-building materials by Phylloicus sp. (Trichoptera, Calamoceratidae)

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Phylloicus sp. larvae live on leaf patches in slow flowing waters and build dorso-ventrally flattened cases from leaf pieces. We hypothesized that Phylloicus larvae are selective towards certain leaf species to build a more resistant case. We exposed Phylloicus larvae to equal-area leaf discs of three plant species from the Brazilian Cerrado (Myrcia guyanensis, Miconia chartacea and Protium brasiliense) and one non-native species (Eucalyptus camaldulensis). Phylloicus larvae built cases with discs of all plant species. However, discs of E. camaldulensis and M. guyanensis were used more (36.4% and 35.7%, respectively) than those of P. brasiliense (20.0%). Discs of M. chartacea were used in an intermediate proportion (28.6%). Selection was resource density-dependent, i.e. when P. brasiliense was offered at higher abundance, it was used more frequently by larvae (ANOVA, P < 0.001). Plant species differed in leaf toughness, phenolic concentration and biomass:area ratio (Kruskal–Wallis, P < 0.05). Larvae preferentially used leaves with higher phenolic concentrations (R s = 0.907, P < 0.001) independently of toughness and biomass:area ratio. We suggest that Phylloicus selects for case-building leaves that are chemically protected against microbial degradation and shredder consumption, and this selection depends on leaf abundance. Our results also reinforce the importance of riparian resources and their diversity to the maintenance of aquatic consumers in tropical shaded streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • APHA, 1992. Standard Methods for the Examination of Water and Wastewater, 18th ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Bärlocher, F. & M. A. S. Graça, 2005. Total phenolics. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide. Springer, Dordrecht: 45–48.

    Google Scholar 

  • Bastian, M., L. Boyero, B. R. Jackes & R. G. Pearson, 2007. Leaf litter diversity and shredder preferences in an Australian tropical rain-forest stream. Journal of Tropical Ecology 23: 219–229.

    Article  Google Scholar 

  • Boyero, L., P. A. Rincón & J. Bosch, 2006. Case selection by a limnephilid caddisfly [Potamophylax latipennis (Curtis)] in response to different predators. Behavioral Ecology and Sociobiology 59: 364–372.

    Article  Google Scholar 

  • Campbell, I. C. & L. Fuchshuber, 1995. Polyphenols, condensed tannins, and processing rates of tropical and temperate leaves in an Australian stream. Journal of the North American Benthological Society 14: 174–182.

    Article  Google Scholar 

  • Cummins, K. W., M. A. Wilzbach, D. M. Gates, J. B. Perry & W. B. Talaiferro, 1989. Shredders and riparian vegetation. BioScience 39: 24–30.

    Article  Google Scholar 

  • de Moor, F. C. & V. D. Ivanov, 2008. Global diversity of caddisflies (Trichoptera: Insecta) in freshwater. Hydrobiologia 595: 393–407.

    Article  Google Scholar 

  • Flint, O. S., R. W. Holzenthal & S. C. Harris, 1999. Catalog of the Neotropical Caddisflies (Insecta: Trichoptera). Special Publication, Ohio Biological Survey, Columbus.

    Google Scholar 

  • Graça, M. A. S., 2001. The role of invertebrates on leaf litter decomposition in streams—a review. International Review of Hydrobiology 86: 383–393.

    Article  Google Scholar 

  • Graça, M. A. S. & M. Zimmer, 2005. Leaf Toughness. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide. Springer, Dordrecht: 109–113.

    Google Scholar 

  • Hanna, H. M., 1961. Selection of materials for case-building larvae of caddis flies (Trichoptera). Proceedings of the Royal Society of London B 36: 37–47.

    Google Scholar 

  • Huamantinco, A. A., L. L. Dumas & J. L. Nessimian, 2005. Description of larva and pupa of Phylloicus abdominalis Ulmer, 1905 (Trichoptera: Calamoceratidae). Zootaxa 1039: 19–26.

    Google Scholar 

  • Klink, C. A. & R. B. Machado, 2005. Conservation of the Brazilian Cerrado. Conservation Biology 19: 707–713.

    Article  Google Scholar 

  • Marques, A. R., Q. S. Garcia, J. L. P. Resende & G. W. Fernandes, 2000. Variations in leaf characteristics of two species of Miconia in the Brazilian cerrado under different light intensities. Tropical Ecology 41: 47–60.

    Google Scholar 

  • Moretti, M. S. & R. D. Loyola, 2005. Does Barypenthus concolor Burmeister (Trichoptera: Odontoceridae) select particles of different sizes for case building? Neotropical Entomology 34: 337–340.

    Article  Google Scholar 

  • Moretti, M. S., J. F. Gonçalves, R. Ligeiro & M. Callisto, 2007. Invertebrates colonization on native tree leaves in a neotropical stream (Brazil). International Review of Hydrobiology 92: 199–210.

    Article  Google Scholar 

  • Norwood, J. C. & K. W. Stewart, 2002. Life history and case-building behavior of Phylloicus ornatus (Trichoptera: Calamoceratidae) in two spring-fed streams in Texas. Annals of the Entomological Society of America 95: 44–56.

    Article  Google Scholar 

  • Oliveira, P. S. & R. J. Marquis, 2002. The Cerrados of Brazil: Ecology and Natural History of Netropical Savanna. Columbia University Press, New York.

    Google Scholar 

  • Otto, C., 2000. Cost and benefit from shield cases in caddis larvae. Hydrobiologia 436: 35–40.

    Article  Google Scholar 

  • Otto, C. & B. S. Svensson, 1980. The significance of case material selection for the survival of caddis larvae. Journal of Animal Ecology 49: 855–865.

    Article  Google Scholar 

  • Prather, A. L., 2003. Revision of the Neotropical caddisfly genus Phylloicus (Trichoptera: Calamoceratidae). Zootaxa 275: 1–214.

    Google Scholar 

  • Resh, V. H. & D. M. Rosenberg (eds), 1984. The Ecology of Aquatic Insects. Praeger, New York.

    Google Scholar 

  • Rincón, J. & I. Martínez, 2006. Food quality and feeding preferences of Phylloicus sp. (Trichoptera: Calamoceratidae). Journal of the North American Benthological Society 25: 209–215.

    Article  Google Scholar 

  • Rincón, J., I. Martínez, E. León & N. Ávila, 2005. Procesamiento de la hojarasca de Anacardium excelsum en una corriente intermitente tropical del noroeste de Venezuela. Interciencia 30: 228–234.

    Google Scholar 

  • Roa, R., 1992. Design and analysis of multiple-choice feeding preference experiments. Oecologia 89: 509–515.

    Google Scholar 

  • Salusso, M. M., 2000. Biodegradation of subtropical forest woods from north-west Argentina by Pleurotus laciniatocrenatus. New Zealand Journal of Botany 38: 721–724.

    Google Scholar 

  • Stevens, D. J., M. H. Hansell, J. A. Freel & P. Monaghan, 1999. Developmental trade-offs in caddis flies: increased investment in larval defense alters adult resource allocation. Proceedings of the Royal Society of London B 266: 1049–1054.

    Article  Google Scholar 

  • Wallace, J. B. & J. R. Webster, 1996. The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology 41: 115–139.

    Article  PubMed  CAS  Google Scholar 

  • Wantzen, K. M. & R. Wagner, 2006. Detritus processing by invertebrate shredders: a neotropical–temperate comparison. Journal of the North American Benthological Society 25: 216–232.

    Article  Google Scholar 

  • Wiggins, G. B., 1996. Larvae of North American Caddisfly Genera (Trichoptera), 2nd ed. University of Toronto Press, Ontario.

    Google Scholar 

  • Wiggins, G. B., 2004. Caddisflies, the Underwater Architects. University of Toronto Press, Toronto, Buffalo, London.

    Google Scholar 

  • Zar, J. H., 1999. Biostatistical Analysis. Prentice Hall, New Jersey.

    Google Scholar 

Download references

Acknowledgments

We thank COPASA-MG and IEF-MG for logistical facilities and research licenses. This work was supported by FAPEMIG, CNPq, CAPES Foundation and US Fish & Wildlife Service. We also thank Manuel Graça, Robert Hughes and 3 anonymous referees for valuable comments on the previous version of the manuscript, and Juliana França and Victor Gomes for assistance in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo S. Moretti.

Additional information

Handling editor: D. Dudgeon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moretti, M.S., Loyola, R.D., Becker, B. et al. Leaf abundance and phenolic concentrations codetermine the selection of case-building materials by Phylloicus sp. (Trichoptera, Calamoceratidae). Hydrobiologia 630, 199–206 (2009). https://doi.org/10.1007/s10750-009-9792-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9792-y

Keywords

Navigation