, Volume 630, Issue 1, pp 187–197 | Cite as

Effects of travertine and flow on leaf retention in Fossil Creek, Arizona

  • Zacchaeus G. Compson
  • Mead Z. Mier
  • Jane C. Marks
Primary research paper


Leaf retention is important in transferring energy from riparian trees to stream food webs. Retention increases with geomorphic complexity such as substrate coarseness, sinuosity, and the presence of debris dams. High discharge can reduce retention, particularly when streams lack physical trapping features. Travertine formations, caused by calcium carbonate deposition, can alter stream morphology. To date, however, we know of no study testing the effect of travertine on leaf retention. This study capitalized on a river restoration project in Fossil Creek, Arizona, where water was returned to the channel after a century of diversion. We examined how the fixed factors Flow (before and after restoration) and Morphology (travertine and riffle-pool sites) affected leaf retention. Leaf retention was higher in sites where travertine forms barriers across the river, relative to sites with riffle-pool morphology. Most leaves retained in travertine reaches were concentrated at the bottom of pools formed between dams. Although flow restoration did not alter retention rates across all sites, it diminished them at travertine sites, indicating an interaction between stream flow and morphology. We conclude that stream complexity and leaf retention are enhanced by travertine deposition but that high discharge can reduce the retentive capacity of in-stream structures.


Leaf retention Flow restoration Travertine CPOM Fossil Creek 



We thank the following organizations for financial support: National Science Foundation (Ecosystem and Ecology Panels), Nina Mason Pulliam Charitable Trust, and the Ecological Restoration Institute at Northern Arizona University. The Meriam-Powell Center for Environmental Research provided access to their lab and equipment and The Arboretum at Flagstaff kindly contributed a portion of our leaves. Additionally, Leonard Sklar’s research group at San Francisco State University helped with morphological measurements. Finally, the project could not have been completed without help from James Weatherill, Greg Hitzroth, Katherine Sides, Stephen Penrod, David Sides, Hadley Austin, Brenda Harrop, Ken and Tina Adams, Eric Dinger, Jacob and Matthew Higgins, Kathryn Skinner, Chris Cooper, Mari Olson, Rhett, Catherine, Josh and Nancy Eisenberg, Jerry Harris, James Roemer, Olive Mier-Holland and Robert, Sandra, Cady, and Wright Mier.


  1. Barnes, I., 1965. Geochemistry of Birch Creek, Inyo County, California: a travertine depositing creek in an arid climate. Geochimica et Cosmochimica Acta 29: 85–112.CrossRefGoogle Scholar
  2. Bernhardt, E. S., M. A. Palmer, J. D. Allan, G. Alexander, K. Barnas, S. Brooks, J. Carr, S. Clayton, C. Dahm, J. Follstad-Shah, D. Galat, S. Gloss, P. Goodwin, D. Hart, B. Hassett, R. Jenkinson, S. Katz, G. M. Kondolf, P. S. Lake, R. Lave, J. L. Meyer, T. K. O’Donnell, L. Pagano, B. Powell & E. Sudduth, 2005. Synthesizing U.S. river restoration efforts. Science 308: 636–637.PubMedCrossRefGoogle Scholar
  3. Brookshire, E. N. & K. A. Dwire, 2003. Controls on patterns of coarse organic particle retention in headwater streams. Journal of the North American Benthological Society 22: 17–34.CrossRefGoogle Scholar
  4. Carter, C. D. & J. C. Marks, 2007. Influences of travertine dam formation on leaf litter decomposition and algal accrual. Hydrobiologia 575: 329–341.CrossRefGoogle Scholar
  5. Casas, J. J. & M. O. Gessner, 1999. Leaf litter breakdown in a Mediterranean stream characterized by travertine precipitation. Freshwater Biology 41: 781–793.CrossRefGoogle Scholar
  6. Ehrman, T. P. & G. A. Lamberti, 1992. Hydraulic and particulate matter retention in a 3rd-order Indiana stream. Journal of the North American Benthological Society 11: 341–349.CrossRefGoogle Scholar
  7. Emeis, K., H. Richnow & S. Kempe, 1987. Travertine formation in Plitvice National Park, Yugoslavia: chemical versus biological control. Sedimentology 34: 595–609.CrossRefGoogle Scholar
  8. Graca, M. A., 2001. The role of invertebrates on leaf litter decomposition in streams—a review. International Review of Hydrobiology 86: 383–393.CrossRefGoogle Scholar
  9. Hammer, Ø., D. K. Dysthe & B. Jamtveit, 2007. The dynamics of travertine dams. Earth and Planetary Science Letters 256: 258–263.CrossRefGoogle Scholar
  10. Hart, D., T. Johnson, K. Bushaw-Newton, R. Horwitz, A. Bednarek, D. Charles, D. Kreeger & D. Velinsky, 2002. Dam removal: challenges and opportunities for ecological research and river restoration. BioScience 52: 669–681.CrossRefGoogle Scholar
  11. Hoover, T. M., J. S. Richardson & N. Yonemitsu, 2006. Flow-substrate interactions create and mediate leaf litter resource patches in streams. Freshwater Biology 51: 435–447.CrossRefGoogle Scholar
  12. JMP IN, 1989–2003. Academic version 5.1, SAS Institute, Inc., Cary, North Carolina.Google Scholar
  13. Jones, J. B. Jr. & L. A. Smock, 1991. Transport and retention of particulate organic matter in two low-gradient headwater streams. Journal of the North American Benthological Society 10: 115–126.CrossRefGoogle Scholar
  14. Kempe, S. & K. Emeis, 1985. Carbonate chemistry and the formation of Plitvice Lakes. Mitteilungen des Geologisch-Paläontologischen Instituts der Universität Hamburg 58: 351–383.Google Scholar
  15. Kershner, J. L., E. K. Archer, E. K. Coles-Ritchie, E. R. Cowley, R. C. Henderson, K. Kratz, C. M. Quimby, D. L. Turner, L. C. Ulmer & M. R. Vinson, 2004. Guide to effective monitoring of aquatic and riparian resources. United States Department of Agriculture, Forest Service. General Technical Report RMRS-GTR-121.Google Scholar
  16. Laasonen, P., T. Muotka & I. Kivijarvi, 1998. Recovery of macroinvertebrate communities from stream habitat restoration. Aquatic Conservation: Marine and Freshwater Ecosystems 8: 101–113.CrossRefGoogle Scholar
  17. Laitung, B., J. Pretty, E. Chauvet & M. Dobson, 2002. Response of aquatic hyphomycete communities to enhanced stream retention in areas impacted by commercial forestry. Freshwater Biology 47: 313–323.CrossRefGoogle Scholar
  18. Lamberti, G. A. & S. V. Gregory, 1996. Transport and retention of CPOM. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 1st ed. Academic Press, Inc, San Diego, California: 216–229.Google Scholar
  19. LeRoy, C. J. & J. C. Marks, 2006. Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates. Freshwater Biology 51: 605–617.CrossRefGoogle Scholar
  20. Lu, G., C. Zheng, R. J. Donahoe & W. B. Lyons, 2000. Controlling processes in a CaCO3 precipitating stream in Huanglong Natural Scenic District, Sichuan, China. Journal of Hydrology 230: 34–54.CrossRefGoogle Scholar
  21. Malusa, J., S. Overby & R. Parnell, 2003. Potential for travertine formation: Fossil Creek, Arizona. Applied Geochemistry 18: 1081–1093.CrossRefGoogle Scholar
  22. Marks, J. C., 2007. Down go the dams. Scientific American 296: 66–71.PubMedCrossRefGoogle Scholar
  23. Marks, J. C., R. Parnell, C. Carter, E. C. Dinger & G. A. Haden, 2006. Interactions between geomorphology and ecosystem processes in travertine streams: implications for decommissioning a dam on Fossil Creek, Arizona. Geomorphology 77: 299–307.CrossRefGoogle Scholar
  24. Miliša, M., I. Habdija, B. Prime-Habdija, I. Radanović & R. Matoničkin Kepčija, 2006. The role of flow velocity in the vertical distribution of particulate organic matter on moss-covered travertine barriers of the Plitvice Lakes (Croatia). Hydrobiologia 553: 231–243.CrossRefGoogle Scholar
  25. Muehlbauer, J. D., C. J. LeRoy, J. M. Lovett, K. K. Flaccus, J. K. Vlieg & J. C. Marks, 2009. Short-term responses of decomposers to flow restoration in Fossil Creek, Arizona, USA. Hydrobiologia 618: 35–45.CrossRefGoogle Scholar
  26. Muotka, T. & P. Laasonen, 2002. Ecosystem recovery in restored headwater streams: the role of enhanced leaf retention. Journal of Applied Ecology 39: 145–156.CrossRefGoogle Scholar
  27. Overby, S. & D. Neary, 1996. Travertine geomorphology of Fossil Creek. Proceedings of the 1996 Meeting of the Hydrology Section of the Arizona-Nevada Academy of Science.Google Scholar
  28. Palmer, M. A., E. S. Bernhardt, J. D. Allan, P. S. Lake, G. Alexander, S. Brooks, J. Carr, S. Clayton, C. Dahm, J. Follstad Shah, D. J. Galat, S. Gloss, P. Goodwin, D. H. Hart, B. Hassett, R. Jenkinson, G. M. Kondolf, R. Lave, J. L. Meyer, T. K. O’Donnell, L. Pagano, P. Srivastava & E. Sudduth, 2005. Standards for ecologically successful river restoration. Journal of Applied Ecology 42: 208–217.CrossRefGoogle Scholar
  29. Pentecost, A., 2003. Cyanobacteria associated with hot spring travertines. Canadian Journal of Earth Sciences 40: 1447–1457.CrossRefGoogle Scholar
  30. Pentecost, A., G. F. Peterken & H. C. Viles, 2000. The travertine dams of Slade Brook, Gloucestershire: their formation and conservation. Geology Today 16: 22–25.Google Scholar
  31. Platts, W., W. Megahan & G. Minshall, 1983. Methods for evaluating stream, riparian and biotic conditions. U.S.D.A. Forest Service, General Technical Report INT-138. Intermountain Forest and Range Experiment Station, Ogden, Utah.Google Scholar
  32. Pollard, A. I. & T. Reed, 2004. Benthic invertebrate assemblage change following dam removal in a Wisconsin stream. Hydrobiologia 513: 51–58.CrossRefGoogle Scholar
  33. Raikow, D. F., S. A. Grubbs & K. W. Cummins, 1995. Debris dam dynamics and coarse particulate organic matter retention in an Appalachian Mountain stream. Journal of the North American Benthological Society 14: 535–546.CrossRefGoogle Scholar
  34. Schade, J. & S. G. Fisher, 1997. Leaf litter in a Sonoran Desert stream ecosystem. Journal of the North American Benthological Society 16: 612–626.CrossRefGoogle Scholar
  35. Stumm, W. & J. Morgan (eds), 1970. Aquatic chemistry. John Wiley Publishing, New York, New York.Google Scholar
  36. Tarragó, J., P. Sansberro, R. Filip, P. López, A. González, C. Luna & L. Mroginski, 2004. Effect of leaf retention and flavonoids on rooting of Ilex paraguariensis cuttings. Scientia Horticulturae 103: 479–488.CrossRefGoogle Scholar
  37. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  38. Webster, J., E. Benfield, T. Ehrman, M. Schaeffer, J. Tank, J. Hutchens & D. D’ Angelo, 1999. What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta. Freshwater Biology 41: 687–705.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Zacchaeus G. Compson
    • 1
  • Mead Z. Mier
    • 1
    • 2
  • Jane C. Marks
    • 1
  1. 1.Merriam Powell Center for Environmental Research, Department of Biological SciencesNorthern Arizona UniversityFlagstaffUSA
  2. 2.Pima Association of GovernmentsTucsonUSA

Personalised recommendations