Skip to main content

Dietary flexibility in three representative waterbirds across salinity and depth gradients in salt ponds of San Francisco Bay


Salt evaporation ponds have existed in San Francisco Bay, California, for more than a century. In the past decade, most of the salt ponds have been retired from production and purchased for resource conservation with a focus on tidal marsh restoration. However, large numbers of waterbirds are found in salt ponds, especially during migration and wintering periods. The value of these hypersaline wetlands for waterbirds is not well understood, including how different avian foraging guilds use invertebrate prey resources at different salinities and depths. The aim of this study was to investigate the dietary flexibility of waterbirds by examining the population number and diet of three feeding guilds across a salinity and depth gradient in former salt ponds of the Napa-Sonoma Marshes. Although total invertebrate biomass and species richness were greater in low than high salinity salt ponds, waterbirds fed in ponds that ranged from low (20 g l−1) to very high salinities (250 g l−1). American avocets (surface sweeper) foraged in shallow areas at pond edges and consumed a wide range of prey types (8) including seeds at low salinity, but preferred brine flies at mid salinity (40–80 g l−1). Western sandpipers (prober) focused on exposed edges and shoal habitats and consumed only a few prey types (2–4) at both low and mid salinities. Suitable depths for foraging were greatest for ruddy ducks (diving benthivore) that consumed a wide variety of invertebrate taxa (5) at low salinity, but focused on fewer prey (3) at mid salinity. We found few brine shrimp, common in higher salinity waters, in the digestive tracts of any of these species. Dietary flexibility allows different guilds to use ponds across a range of salinities, but their foraging extent is limited by available water depths.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  • Accurso, L. M., 1992. Distribution and abundance of wintering waterfowl on San Francisco Bay 1988–1990. Master’s Thesis, Humboldt State University, Arcata.

  • Anderson, W., 1970. A preliminary study of the relationship of saltponds and wildlife—South San Francisco Bay. California Department of Fish and Game 56: 240–252.

    Google Scholar 

  • Carpelan, L. H., 1957. Hydrobiology of the Alviso salt ponds. Ecology 38: 382–385.

    Article  Google Scholar 

  • Goals Project, 1999. Baylands ecosystem habitat goals. A report of habitat recommendations prepared by the San Francisco Bay Area Wetlands Ecosystem Goals Project. U. S. Environmental Protection Agency, San Francisco and S. F. Bay Regional Water Quality Control Board, Oakland.

  • Harrington, B. & E. Perry, 1995. Important shorebird stating sites meeting Western Hemisphere Shorebird Reserve Network criteria in the United States. Unpublished Report to the U. S. Fish and Wildlife Service, Portland.

  • Harvey, T. E., K. J. Miller, R. L. Hothem, M. J. Rauzon, G. W. Page & R. A. Keck, 1992. Status and trends report on the wildlife of the San Francisco Bay estuary. EPA Coop. Agreement CE-009519-01-0 Final Report. U. S. Fish and Wildlife Service, Sacramento.

  • Josselyn, M., 1983. The ecology of San Francisco Bay tidal marshes: a community profile. FWS/OBS-83/23. U.S. Fish and Wildlife Service, Washington.

  • Lionberger, M. A., D. H. Schoellhamer, P. A. Buchanan & S. Meyer, 2004. Box model of a salt pond as applied to the Napa-Sonoma salt ponds, San Francisco Bay, California. U.S. Geological Survey Water-Resources Investigations Report 03-4199.

  • Lonzarich, D. G., 1988. Temporal and spatial variations in salt pond environments and implications for fish and invertebrates. Master’s Thesis, San Jose State University, San Jose.

  • Lonzarich, D. G. & J. J. Smith, 1997. Water chemistry and community structure of saline and hypersaline salt evaporation ponds in San Francisco Bay, California. California Department of Fish and Game 83: 89–104.

  • Masero, J. A. & A. Perez-Hurtado, 2001. Importance of the supratidal habitats for maintaining overwintering shorebird populations: how redshanks use tidal mudflats and adjacent saltworks in southern Europe. The Condor 103: 21–30.

    Article  Google Scholar 

  • Masero, J. A., M. Perez-Gonzalez, M. Basadre & M. Otero-Saavedra, 1999. Food supply for waders (Aves: Charadrii) in an estuarine area in the Bay of Cadiz (SW Iberian Peninsula). Acta Oecologica 20: 429–434.

    Article  Google Scholar 

  • Masero, J. A., A. Perez-Hurtado, M. Castro & G. M. Arroyo, 2000. Complementary use of intertidal mudflats and adjacent Salinas by foraging waders. Ardea 88: 177–191.

    Google Scholar 

  • Matveev, V., 1995. The dynamics and relative strength of bottom-up vs. top-down impacts in a community of subtropical lake plankton. Oikos 73: 104–108.

    Article  Google Scholar 

  • Miles, A. K., J. Y. Takekawa, D. H. Schoellhamer, C. T. Lu, W. G. Duffy & M. K. Saiki, 2000. Science support for wetland restoration in the Napa-Sonoma salt ponds, San Francisco Bay estuary, 1999 progress report. Unpublished Progress Report, U. S. Geological Survey, Davis and Vallejo.

  • Morris, R. H., D. P. Abbott & E. C. Haderlie, 1980. Intertidal Invertebrates of California. Stanford University Press, Stanford.

    Google Scholar 

  • Murie, A., 1935. Some feeding habits of the Western sandpiper. The Condor 37: 258–259.

    Google Scholar 

  • Myers, J. P., S. L. Williams & F. A. Pitelka, 1980. An experimental analysis of prey availability for sanderlings (Aves: Scolopacidae) feeding on sandy beach crustaceans. Canadian Journal of Zoology 58: 1564–1574.

    Article  Google Scholar 

  • Nichols, F. H., J. E. Cloern, S. N. Luoma & D. H. Peterson, 1986. The modification of an estuary. Science 231: 569–573.

    Google Scholar 

  • Pinkas, L., 1971. Food habits study. Fishery Bulletin 152: 5–10.

    Google Scholar 

  • Posey, M., C. Powell, L. Cahoon & D. Lindquist, 1995. Top down vs. bottom up control of benthic community composition on an intertidal tideflat. Journal of Experimental Marine Biology and Ecology 185: 19–31.

    Article  Google Scholar 

  • Quammen, M. L., 1982. Influence of subtle substrate differences on feeding by shorebirds on intertidal mudflats. Marine Biology 71: 339–343.

    Article  Google Scholar 

  • Risbey, D. A., M. C. Calver & J. Short, 1999. The impact of cats and foxes on small vertebrate fauna of Heirisson Prong, Western Australia. I. Exploring potential impact using diet analysis. Wildlife Research 26: 621–630.

    Article  Google Scholar 

  • SAS Institute, 2000. SAS Procedure Guide, Release 6.08 Edition. SAS Institute, Cary.

    Google Scholar 

  • Smith, R. I. & J. T. Carlton, 1975. Light’s Manual: Intertidal Invertebrates of the Central California Coast. University of California Press, Berkeley.

    Google Scholar 

  • Swarth, C. W., C. Akagi & P. Metropoulus, 1982. The Distribution Patterns and Ecology of Waterbirds Using Coyote Hills Salt Ponds. U. S. Fish and Wildlife Service, San Francisco Bay National Wildlife Refuge, Newark.

  • Takekawa, J. Y., A. K. Miles, D. H. Schoellhamer, G. M. Martinelli, M. K. Saiki & W. G. Duffy, 2000. Science support for wetland restoration in the Napa-Sonoma salt ponds, San Francisco Bay estuary, 2000 progress report. Unpublished Progress Report. U.S. Geological Survey, Davis and Vallejo.

  • Takekawa, J. Y., C. T. Lu & R. T. Pratt, 2001. Bird communities in salt evaporation ponds and baylands of the northern San Francisco Bay estuary. Hydrobiologia 466: 317–328.

    Article  Google Scholar 

  • Takekawa, J. Y., A. K. Miles, D. H. Schoellhamer, N. D. Athearn, M. K. Saiki, W. D. Duffy, S. Kleinschmidt, G. G. Shellenbarger & C. A. Jannusch, 2006. Trophic structure and avian communities across a salinity gradient in evaporation ponds of the San Francisco Bay estuary. Hydrobiologia 567: 307–327.

    Article  CAS  Google Scholar 

  • ter Braak, C. J. F., 1986. Canonical correspondence analyses: a new eigenvector method for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Article  Google Scholar 

  • ter Braak, C. J. F., 1988. Partial canonical correspondence analysis. In Bock, H. H. (ed.), Classification and Related Methods of Data Analysis. North-Holland, Amsterdam: 551–558.

    Google Scholar 

  • ter Braak, C. J. F. & P. Smilauer, 1998. CANOCO Reference Manual and User’s Guide to CANOCO for Windows: Software for Canonical Community Ordination, version 4. Microcomputer Power, Ithaca.

    Google Scholar 

  • Velasquez, C. R., 1993. The ecology and management of waterbirds at commercial saltpans in South Africa. Ph.D. Dissertation, Percy FitzPatrick Institute of African Ornithology, University of Cape Town, South Africa.

  • Velasquez, C. R. & P. A. R. Hockey, 1991. The importance of supratidal foraging habitats for waders at a south temperate estuary. Ardea 80: 243–253.

    Google Scholar 

  • Ver Planck, W. E., 1958. Salt in California. Bulletin No. 175. Divisions of Mines.

  • Warnock, S. E. & J. Y. Takekawa, 1995. Habitat preferences of wintering shorebirds in a temporally changing environment: western sandpipers in the San Francisco Bay estuary. The Auk 112: 920–930.

    Google Scholar 

  • Warnock, N., G. W. Page, T. D. Ruhlen, N. Nur, J. Y. Takekawa & J. T. Hanson, 2002. Management and conservation of San Francisco Bay salt ponds: effects of pond salinity, area, tide, and season on Pacific Flyway waterbirds. Waterbirds 25: 79–92.

    Google Scholar 

  • Warnock, N., J. Y. Takekawa & M. A. Bishop, 2004. Migration and stopover strategies of individual Dunlin along the Pacific coast of North America. Canadian Journal of Zoology 82: 1687–1697.

    Article  Google Scholar 

  • Wilson Jr., W. H., 1990. Relationship between prey abundance and foraging site selection by semipalmated sandpipers on a Bay of Fundy mudflat. Journal of Field Ornithology 61: 9–19.

    Google Scholar 

  • Wilson Jr., W. H., 1991. The foraging ecology of migratory shorebirds in marine soft-sediment communities: the effects of episodic predation on prey populations. American Zoologist 31: 840–848.

    Google Scholar 

Download references


This project was funded by the U. S. Geological Survey, Priority Ecosystem Science Initiative, Western Ecological Research Center, and Sacramento Water Resources District Office. S. Wainwright-De La Cruz, M. Eagan, D. Jaouen, C. Lu, M. Law, M. Disney, S. Spring, A. Meckstroth, H. Tran, V. Trabold, T. Mumm, G. Downard, G. Martinelli, D. Battaglia, M. Ricca, P. Buchanan, E. Brocales, T. Rockwell, and A. Wilde (USGS), L. Wyckoff, T. Huffman, J. Schwennesen, T. Maatouck, K. Haggard, and A. Crout (California Department of Fish and Game), and R. Laird (Ducks Unlimited), L. Allen and W. Bonnet (Can Duck Club), and C. Hickey and N. Warnock (Pt. Reyes Bird Observatory) assisted with field surveys. B. Hiller led the diet collections. We thank I. Woo, S. De La Cruz, J. John, and anonymous reviewers for comments on the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to J. Y. Takekawa.

Additional information

Guest Editors: J. John & B. Timms

Salt Lake Research: Biodiversity and Conservation—Selected papers from the 9th Conference of the International Society for Salt Lake Research

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Takekawa, J.Y., Miles, A.K., Tsao-Melcer, D.C. et al. Dietary flexibility in three representative waterbirds across salinity and depth gradients in salt ponds of San Francisco Bay. Hydrobiologia 626, 155–168 (2009).

Download citation

  • Published:

  • Issue Date:

  • DOI:


  • Salt ponds
  • Diet
  • Waterbirds
  • San Francisco Bay