Skip to main content

Development of a diatom-based transfer function for lakes and streams severely impacted by secondary salinity in the south-west region of Western Australia

Abstract

The association of diatom assemblages to salinity was studied in 95 lakes and streams ranging from freshwater to hypersaline in the south-west of Western Australia. The relationship between environmental variables and species composition was explored using canonical correspondence analysis (CCA) and partial CCA. Salinity was shown to account for a significant and independent amount of variation in the diatom data, enabling a transfer function to be developed based on the final dataset, which consisted of 89 sites and 150 diatom taxa. The most successful model was derived using tolerance-downweighted weighted averaging. Summary statistics showed that the transfer function performed very well with a high coefficient of determination and low prediction errors that remained high after the cross-validation method of jackknifing (r 2apparent  = 0.97 and r 2jackknifed  = 0.89). This suggests that salinity can be accurately predicted using relative abundances of diatoms, and the model can now be applied to paleolimnological reconstructions. However, the transfer function also provides the basis for use in future biomonitoring studies to detect increases in salinity for lakes and streams most at risk, as well as to evaluate the success of remediation measures implemented to secondary salinised systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Alexandra, J. & D. Eyre, 1993. Water and environment. In Johnson, M. & S. Rix (eds), Water in Australia: Managing Economic, Environmental and Community Reform. Pluto Press Australia Limited, Leichhardt, NSW.

    Google Scholar 

  • Anderson, N. J., 1993. Natural versus anthropogenic change in lakes: the role of the sediment record. Trends in Ecology and Evolution 8: 356–361.

    Article  Google Scholar 

  • Anderson, N. J., 1995. Using the past to predict the future: lake sediments and the modelling of limnological disturbance. Ecological Modelling 78: 149–172.

    Article  CAS  Google Scholar 

  • Antoniades, D., M. S. V. Douglas & J. P. Smol, 2004. Diatom species–environment relationships and inference models from Isachsen, Ellef Ringnes Island, Canadian High Arctic. Hydrobiologia 529: 1–18.

    Article  Google Scholar 

  • Archibald, R. E. M., 1983. The diatoms of the Sundays and Great Fish Rivers in the Eastern Cape Province of South Africa. Bibliotheca Diatomologica 1: 1–362.

    Google Scholar 

  • Battarbee, R. W., 2000. Palaeolimnological approaches to climate change, with special regard to the biological record. Quaternary Science Reviews 19: 107–124.

    Article  Google Scholar 

  • Battarbee, R. W., R. J. Flower, S. Juggins, S. T. Patrick & A. C. Stevenson, 1997. The relationship between diatoms and surface water quality in the Hoylandet area of Nord-Trondelag, Norway. Hydrobiologia 348: 69–80.

    Article  CAS  Google Scholar 

  • Battarbee, R. W., V. J. Jones, R. J. Flower, N. G. Cameron, H. Bennion, L. Carvalho & S. Juggins, 2001. Diatoms. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Beresford, Q., H. Phillips & H. Bekle, 2001. The salinity crisis in Western Australia: a case of policy paralysis. Australian Journal of Public Administration 60: 30–38.

    Article  Google Scholar 

  • Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical Modelling of Quaternary Science Data. Technical Guide 5. Quaternary Research Association, Cambridge.

    Google Scholar 

  • Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. Ter Braak, 1990. Diatoms and pH reconstruction. Philosophical Transactions: Biological Sciences 327: 263–278.

    Article  Google Scholar 

  • Bloom, A. M., K. A. Moser, D. F. Porinchu & G. M. Macdonald, 2003. Diatom-inference models for surface–water temperature and salinity developed from a 57-lake calibration set from Sierra Nevada, California, USA. Journal of Paleolimnology 29: 235–255.

    Article  Google Scholar 

  • Bocard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Article  Google Scholar 

  • Boulton, A. J. & M. A. Brock, 1999. Australian Freshwater Ecology: Processes and Management. Gleneagles Publishing, Glen Osmond, SA.

    Google Scholar 

  • Cholnoky, B. J., 1966. Diatomeenassoziationen aus einigen Quellen in Südwest-Afrika und Bechuanaland. Nova Hedwigia 21: 163–244.

    Google Scholar 

  • Clavero, E., M. Hernandez-Marine, J. O. Grimalt & F. Garcia-Pichel, 2000. Salinity tolerance of diatoms from thalassic hypersaline environments. Journal of Phycology 36: 1021–1034.

    Article  Google Scholar 

  • Cramer, V. A. & R. J. Hobbs, 2002. Ecological consequences of altered hydrological regimes in fragmented ecosystems in southern Australia: impacts and possible management responses. Austral Ecology 27: 546–564.

    Article  Google Scholar 

  • Cumming, B. F. & J. P. Smol, 1993. Development of diatom-based salinity models for paleoclimatic research from lakes in British Columbia (Canada). Hydrobiologia 269(270): 179–196.

    Article  Google Scholar 

  • Davies, S. J., S. E. Metcalfe, M. E. Caballero & S. Juggins, 2002. Developing diatom-based transfer functions for Central Mexican lakes. Hydrobiologia 467: 199–213.

    Article  CAS  Google Scholar 

  • Davis, J. A., 2004. Valleys of salt, channels of water, pools of life–environmental aspects of salinity engineering. In Dogramaci, S. & A. Waterhouse (eds), 1st National Salinity Engineering Conference. Institution of Engineers, Perth, WA, Australia.

    Google Scholar 

  • De Dekker, P., 1983. Australian salt lakes: their history, chemistry, and biota—a review. Hydrobiologia 105: 231–244.

    Article  Google Scholar 

  • Dixit, S. S., B. F. Cumming, H. J. B. Birks, J. P. Smol, J. C. Kingston, A. J. Uutala, D. F. Charles & K. E. Camburn, 1993. Diatom assemblages from Adirondack lakes (New York, USA) and the development of inference models for retrospective assessment. Journal of Paleolimnology 8: 27–47.

    Article  Google Scholar 

  • Dixon, P. M., 2001. The bootstrap and the jackknife. Describing the precision of ecological indices. In Scheiner, S. M. & J. Gurevitch (eds), Design and Analysis of Ecological Experiments. Oxford University Press, New York.

    Google Scholar 

  • Ehrlich, A., 1995. Atlas of the Inland-Water Diatom Flora of Israel. Flora Palaestina. The Israel Academy of Sciences and Humanities, Israel.

    Google Scholar 

  • Enache, M. & Y. T. Prairie, 2002. WA-PLS diatom-based pH, TP and DOC inference models from 42 lakes in the Abitibi clay belt area (Quebec, Canada). Journal of Paleolimnology 27: 151–171.

    Article  Google Scholar 

  • Fourtanier, E. & J. P. Kociolek, 1999. Catalogue of the diatom genera. Diatom Research 14: 1–190.

    Google Scholar 

  • Fritz, S. C., S. Juggins, R. W. Battarbee & D. R. Engstrom, 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352: 706–708.

    Article  Google Scholar 

  • Fritz, S. C., S. Juggins & R. W. Battarbee, 1993. Diatom assemblages and ionic characterization of lakes of the northern Great Plains, North America: a tool for reconstructing past salinity and climate fluctuations. Canadian Journal of Fisheries and Aquatic Sciences 50: 1844–1856.

    Article  CAS  Google Scholar 

  • Gasse, F., 1986. East African diatoms. Taxonomy, ecological distribution. Bibliotheca Diatomologica 11: 1–201.

    Google Scholar 

  • Gasse, F., 1987. Diatoms for reconstructing palaeoenvironments and paleohydrology in tropical semi-arid zones. Example of some lakes from Niger since 12 000 BP. Hydrobiologia 154: 127–163.

    Article  Google Scholar 

  • Gasse, F., 2002. Diatom-inferred salinity and carbonate isotopes in Holocene waterbodies of the western Sahara and Sahel (Africa). Quaternary Science Reviews 21: 737–767.

    Article  Google Scholar 

  • Gasse, F., S. Juggins & L. B. Khelifa, 1995. Diatom-based transfer functions for inferring past hydrochemical characteristics of African lakes. Palaeogeography, Palaeoclimatology, Palaeoecology 117: 31–54.

    Article  Google Scholar 

  • Gasse, F., P. Barker, P. A. Gell, S. C. Fritz & F. Chalie, 1997. Diatom-inferred salinity in palaeolakes: an indirect tracer of climate change. Quaternary Science Reviews 16: 547–563.

    Article  Google Scholar 

  • Gell, P. A., 1997. The development of a diatom database for inferring lake salinity, Western Victoria, Australia: towards a quantitative approach for reconstructing past climates. Australian Journal of Botany 45: 389–423.

    Article  Google Scholar 

  • Gell, P. A., 1998. Quantitative reconstruction of the Holocene palaeosalinity of paired crater lakes based on a diatom transfer function. Palaeoclimates 3: 83–96.

    Google Scholar 

  • George, R., D. McFarlane & B. Nulsen, 1997. Salinity threatens the viability of agriculture and ecosystems in Western Australia. Hydrogeology Journal 5: 6–21.

    Article  Google Scholar 

  • George, R. J., R. A. Nulsen, R. Ferdowsian & G. P. Raper, 1999. Interactions between trees and groundwaters in recharge and discharge areas—a survey of Western Australian sites. Agricultural Water Management 39: 91–113.

    Article  Google Scholar 

  • Ghassemi, F., A. J. Jakeman & H. A. Nix, 1995. Salinisation of Land and Water Resources: Human Causes, Extent Management and Case Studies. University of New South Wales Press Ltd, Sydney.

    Google Scholar 

  • Halse, S. A., 2004. Impacts of drainage disposal on biodiversity in wetlands of the Western Australian Wheatbelt. In Dogramaci, S. & A. Waterhouse (eds), 1st National Salinity Engineering Conference. Institution of Engineers, Perth, WA, Australia.

    Google Scholar 

  • Halse, S. A., G. B. Pearson & S. Patrick, 1993. Vegetation of Depth-Gauged Wetlands in Nature Reserves of South-West Western Australia. Department of Conservation and Land Management, Perth, WA.

    Google Scholar 

  • Halse, S. A., J. K. Ruprecht & A. M. Pinder, 2003. Salinisation and prospects for biodiversity in rivers and wetlands of south-west Western Australia. Australian Journal of Botany 51: 673–688.

    Article  Google Scholar 

  • Hammer, U. T., 1986. Saline Lake Ecosystems of the World. DR W. Junk Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.

    Article  Google Scholar 

  • John, J., 1983. The diatom flora of the Swan River Estuary, Western Australia. Bibliotheca Diatomologica 64: 1–359.

    Google Scholar 

  • John, J., 1998. Diatoms: tools for bioassessment of river health. A model for south-Western Australia. Project UCW 3. Land and Water Resources Research and Development Corporation, Canberra.

    Google Scholar 

  • John, J., 2000. A Guide to Diatoms as Indicators of Urban Stream Health. Urban Sub Program, Report No. 7. Land and Water Resources Research and Development Corporation, Canberra.

    Google Scholar 

  • Juggins, S., 2003. User Guide C2 Version 1.3. Software for Ecological and Palaeoecological Data Analysis and Visualisation. University of Newcastle, Newcastle upon Tyne, UK.

    Google Scholar 

  • Kay, W. R., S. A. Halse, M. D. Scanlon & M. J. Smith, 2001. Distribution and environmental tolerances of aquatic macroinvertebrate families in the agricultural zone of southwestern Australia. Journal of the North American Benthological Society 20: 182–199.

    Article  Google Scholar 

  • Lane, J. A. K. & A. J. McComb, 1988. Western Australian wetlands. In McComb, A. J. & P. S. Lake (eds), The Conservation of Australian Wetlands. Surrey Beatty & Sons Pty Limited, Chipping Norton, NSW.

    Google Scholar 

  • Lange-Bertalot, H., P. Cavacini, N. Tagliaventi & S. Alfinito, 2003. Diatoms of Sardinia. Rare and 76 new species in rock pools and other ephemeral waters. Iconographia Diatomologica 12: 1–438.

    Google Scholar 

  • Lepš, J. & P. Ŝmilauer, 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Mayer, X. M., J. K. Ruprecht, P. M. Muirden & M. A. Bari, 2004. A review of stream salinity in the south-west of Western Australia. In Dogramaci, S. & A. Waterhouse (eds), 1st National Salinity Engineering Conference. Institution of Engineers, Perth, WA, Australia.

    Google Scholar 

  • McComb, A. J. & P. S. Lake, 1990. Australian Wetlands. Collins/Angus & Robertson Publishers, North Ryde, NSW.

    Google Scholar 

  • McFarlane, D. J., R. J. George & P. A. Caccetta, 2004. The extent and potential area of salt-affected land in Western Australia estimated using remote sensing and digital terrain models. In Dogramaci, S. & A. Waterhouse (eds), 1st National Salinity Engineering Conference. Institute of Engineers, Perth, WA, Australia.

    Google Scholar 

  • Nielsen, D. L., M. A. Brock, G. N. Rees & D. S. Baldwin, 2003. Effects of increasing salinity on freshwater ecosystems in Australia. Australian Journal of Botany 51: 655–665.

    Article  Google Scholar 

  • Racca, J. M. J., I. Gregory-Eaves, R. Pienitz & Y. T. Prairie, 2004. Tailoring palaeolimnological diatom-based transfer functions. Canadian Journal of Fisheries and Aquatic Sciences 61: 2440–2454.

    Article  Google Scholar 

  • Reed, J. M., 1998. A diatom-conductivity transfer function for Spanish salt lakes. Journal of Paleolimnology 19: 399–416.

    Article  Google Scholar 

  • Reid, M., 2005. Diatom-based models for reconstructing past water quality and productivity in New Zealand lakes. Journal of Paleolimnology 33: 13–38.

    Article  Google Scholar 

  • Schofield, N. J., J. K. Ruprecht & I. C. Loh, 1988. The Impact of Agricultural Development on the Salinity of Surface Water Resources of South-West Western Australia. Water Authority of Western Australia, Perth.

    Google Scholar 

  • Sherrod, B. L., 1999. Gradient analysis of diatom assemblages in Puget Sound salt marsh: can such assemblages be used for quantitative paleoecological reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 149: 213–226.

    Article  Google Scholar 

  • Snoeijs, P., 1999. Diatoms and environmental change in brackish waters. In Stoermer, E. F. & J. P. Smol (eds), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Stevenson, R. J. & Y. Pan, 1999. Assessing environmental conditions in rivers and streams with diatoms. In Stoermer, E. F. & J. P. Smol (eds), The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Ter Braak, C. J. F., 1987. The analysis of vegetation–environment relationships by canonical correspondence analysis. Vegetatio 69: 69–77.

    Article  Google Scholar 

  • Ter Braak, C. J. F. & P. Ŝmilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca, NY.

    Google Scholar 

  • Tibby, J., 2004. Development of a diatom-based model for inferring total phosphorous in southeastern Australian water storages. Journal of Paleolimnology 31: 23–36.

    Article  Google Scholar 

  • Timms, B. V., 2005. Salt lakes in Australia: present problems and prognosis for the future. Hydrobiologia 552: 1–15.

    Article  Google Scholar 

  • Williams, W. D., 1983. Life in Inland Waters. Blackwell Scientific Publications, Carlton, Victoria.

    Google Scholar 

  • Wilson, S. E., B. F. Cumming & J. P. Smol, 1994. Diatom-salinity relationships in 111 lakes from the Interior Plateau of British Columbia, Canada: the development of diatom-based models for paleosalinity reconstructions. Journal of Paleolimnology 12: 197–221.

    Article  Google Scholar 

  • Wilson, S. E., B. F. Cumming & J. P. Smol, 1996. Assessing the reliability of salinity inference models from diatom assemblages: an examination of a 219-lake data set from western North America. Canadian Journal of Fisheries and Aquatic Sciences 53: 1580–1594.

    Article  Google Scholar 

  • Witkowski, A., H. Lange-Bertalot & D. Metzeltin, 2000. Diatom flora of marine coasts I. Iconographia Diatomologica 7: 1–925.

    Google Scholar 

  • Yang, X., C. Kamenik, R. Schmidt & S. Wang, 2003. Diatom-based conductivity and water-level inference models from eastern Tibetan (Qinghai-Xizang) Plateau lakes. Journal of Paleolimnology 30: 1–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Laura Cunningham for her advice and help with the CANOCO program and Steve Juggins, Jane Reed and John Tibby for their suggestions regarding the transfer function.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob John.

Additional information

Guest Editors: J. John & B. Timms

Salt Lake Research: Biodiversity and Conservation—Selected papers from the 9th Conference of the International Society for Salt Lake Research

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 332 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Taukulis, F.E., John, J. Development of a diatom-based transfer function for lakes and streams severely impacted by secondary salinity in the south-west region of Western Australia. Hydrobiologia 626, 129–143 (2009). https://doi.org/10.1007/s10750-009-9741-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9741-9

Keywords

  • South-west Western Australia
  • Diatoms
  • Salinity
  • Transfer function