Skip to main content

Seasonal dynamics of zooplankton in a shallow eutrophic, man-made hyposaline lake in Delhi (India): role of environmental factors

Abstract

Old Fort Lake, a small (1.6 ha), shallow, and recreational water body in Delhi (India) was studied through monthly surveys in two consecutive years (January, 2000–December, 2001). Precipitation is the major source of water for this closed basin lake. In addition, ground water is used for replenishing the lake regularly. This alkaline, hyposaline hard water lake contains very high ionic concentration, especially of nitrates. Based on overall ionic composition, this lake can be categorized as chloride–sulfate alkaline waters with the anion sequence dominated by SO4 2− > Cl > HCO3 , and the cations by Mg++ > Ca++. The overall seasonal variability in physicochemical profile was largely regulated by the annual cycle of evaporation and precipitation, whereas the ground water largely influences its water quality. The lake exhibited phytoplankton-dominated turbid state due to dominance of the blue green alga, Microcystis aeruginosa. The persistent cyanobacterial blooms and the elevated nutrient levels are indicative of the cultural eutrophication of the lake. This study focuses on the relative importance of eutrophic vis-à-vis hyposaline conditions in determining the structure and seasonal dynamics of zooplankton species assemblages. A total of 52 zooplankton species were recorded and rotifers dominated the community structure qualitatively as well as quantitatively. The genus Brachionus comprised a significant component of zooplankton community with B. plicatilis as the most dominant species. The other common taxa were B. quadridentatus, B. angularis, Lecane grandis, L. thalera, L. punctata, Mesocyclops sp., and Alona rectangula. Multivariate data analysis techniques, Canonical Correspondence Analysis (CCA) along with Monte Carlo Permutation Tests were used to determine the minimum number of environmental factors that could explain statistically significant (P < 0.05) proportions of variation in the species data. The significant variables selected by CCA were NH3–N followed by percent saturation of DO, COD, SS, BOD, NO2–N, rainfall, silicates, and PO4–P. The results indicate that the seasonal succession patterns of the zooplankton species were largely controlled by physicochemical factors related directly or indirectly to the process of eutrophication, whereas hyposaline conditions in the lake determined the characteristic species composition.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Allen, A. P., T. R. Whittier, D. P. Larsen, P. R. Kaufmann, R. J. O’ Connor, R. M. Hughes, R. S. Stemberger, S. S. Dixit, R. O. Brinkhurst, A. T. Herlihy & S. G. Paulsen, 1999. Concordance of taxonomic composition patterns across multiple assemblages: effects of scale, size and land use. Canadian Journal of Fisheries and Aquatic Sciences 56: 2029–2040.

    Article  Google Scholar 

  • APHA, 1989. Standard Methods for the Examination of Water and Wastewater, 17th ed. American Public Health Association, Washington DC.

    Google Scholar 

  • Armengol, J., J. L. Riera & J. A. Morgui, 1991. Major ionic composition in the Spanish reservoirs. Verhandlungen der Internationalen Vereinigung für Limnologie 24: 1363–1366.

    CAS  Google Scholar 

  • Arora, J., 2003. Limnological studies on two shallow, eutrophic, man-made lakes in Delhi. Ph.D. thesis. University of Delhi, Delhi.

    Google Scholar 

  • Beaver, J. R., A. M. Miller-Leneke & J. K. Actun, 1999. Midsummer zooplankton assemblages in four types of wetlands in the upper Midwest. U.S.A. Hydrobiologia 380: 209–220.

    Article  Google Scholar 

  • Berka, C., H. Schreier & K. Hall, 2001. Linking water quality with agricultural intensification in a rural water shed. Water Air and Soil Pollution 127: 389–401.

    Article  CAS  Google Scholar 

  • Berzins, B. & B. Pejler, 1989. Rotifer occurrence in relation to temperature. Hydrobiologia 175: 223–231.

    Article  Google Scholar 

  • Bos, D. G., B. F. Cumming & J. P. Smol, 1999. Cladocera and Anostraca from the interior plateau of British Columbia, Canada, as paleolimnological indicators of salinity and lake level. Hydrobiologia 392: 129–141.

    Article  CAS  Google Scholar 

  • Branco, C. W. C., F. A. Esteves & B. Kozlowsky-Suzuki, 2000. The zooplankton and other limnological features of a humic coastal lagoon (lagoa Comprida, Macé, R. J.) in Brazil. Hydrobiologia 437: 71–81.

    Article  Google Scholar 

  • Brandl, Z., B. Desortova, J. Hrbacel, V. Vyhnalek, J. Seda & M. Straskraba, 1989. Seasonal changes in zooplankton and phytoplankton and their mutual relations in some Czechoslovak reservoirs. Archiv für Hydrobiologie 33: 597–604.

    Google Scholar 

  • Brower, J. E., J. H. Zan & C. N. von Ende, 1990. Species diversity. In William, C. (ed.), In Field and Laboratory Field Methods for General Ecology, 3rd. Brown Publishers, Dubuque IA: 153–175.

    Google Scholar 

  • Burgis, M. J., 1973. Observation on the Cladocera of the Lake George, Uganda. Journal of Zoology, London 170: 339–349.

    Google Scholar 

  • Carmichael, W. W., 1996. Toxic Microcystis and the environment. In Watanabe, M. F., K. Harada, W. W. Carmichael & H. Fujiki (eds), Toxic Microcystis. CRC Press, Boca Raton: 1–11.

    Google Scholar 

  • Carney, H. J., 1998. Food web approaches in biodiversity studies and conservation. Verhandlungen der Internationalen Vereinigung für Limnologie 26: 2409–2412.

    Google Scholar 

  • Codd, G. A., 2000. Cyanobacterial toxins, the perception of water quality, and the priorisation of eutrophication control. Ecological Engineering 16: 51–60.

    Article  Google Scholar 

  • Colburn, E. A., 1988. Factors influencing species diversity in saline waters of Death Valley, USA. Hydrobiologia 158: 215–226.

    Article  CAS  Google Scholar 

  • de Mott, W. R., Q. Z. Zhang & W. W. Carmichael, 1991. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnology and Oceanography 36: 1346–1357.

    Google Scholar 

  • Dodson, S. I., 1992. Predicting crustacean zooplankton species richness. Limnology and Oceanography 37: 848–856.

    Article  Google Scholar 

  • Drever, J. I., 1996. The Geochemistry of Natural Waters, 3rd ed. Prentice Hall, New Jersey.

    Google Scholar 

  • Dumont, H. J., 1977. Biotic factors in the population dynamics of rotifers. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 8: 98–122.

    Google Scholar 

  • Dumont, H. J., 1994. On the diversity of the Cladocera in the tropics. Hydrobiologia 272: 27–38.

    Article  Google Scholar 

  • Egborge, A. B. M., 1994. Salinity and the distribution of rotifers in the Lagos Harbour–Badagry Creek system, Nigeria. Hydrobiologia 272: 95–104.

    Article  Google Scholar 

  • Fernando, C. H., 1994. Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia 272: 105–123.

    Article  Google Scholar 

  • Fresenius, W., K. E. Quenten & W. Schneider (eds), 1988. Water Analysis. A Practical Guide to Physico-chemical, Chemical and Microbiological Water Examination and Quality Assurance. Springer Verlag, Berlin.

    Google Scholar 

  • Furch, K., 2000. Evaluation of groundwater input as major source of solutes in an Amazonian floodplain lake during the low water period. Verhandlungen der Internationalen Vereinigung für Limnologie 27: 412–415.

    CAS  Google Scholar 

  • Gaviria, S., 1993. Crustacean plankton of a high altitude tropical lake: Laguna de Chingaza, Columbia. Verhandlungen der Internationalen Vereinigung für Limnologie 25: 906–911.

    Google Scholar 

  • Gilbert, J. J. & K. G. Bogdan, 1984. Rotifer grazing: in situ studies on selectivity and rates. In Meyer, D. G. & J. R. Strickler (eds), Trophic Interactions within Aquatic Ecosystems, Vol. 85. American Association for the Advancement of Science Selected Symposium, Boulder, Colorado: 97–133.

    Google Scholar 

  • Gopal, B. & D. P. Zutshi, 1998. Fifty years of hydrobiological research in India. Hydrobiologia 384: 267–290.

    Article  Google Scholar 

  • Green, J. & S. Mengistou, 1991. Specific diversity and community structure of Rotifera in a salinity series of Ethiopian inland water bodies. Hydrobiologia 209: 95–106.

    Google Scholar 

  • Green, J., A. I. el Moghraby & O. M. M. Ali, 1979. Biological observations on the crater lakes of Jebel Marra, Sudan. Journal of Zoology, London 189: 493–502.

    Google Scholar 

  • Hammer, U. T., 1986. Saline Lake Ecosystems of the World. Dordrecht. Dr. W. Junk Publishers, Boston.

    Google Scholar 

  • Henning, M., H. Hertel, H. Wall & J. G. Kohl, 1991. Strain-specific influence of Microcystis aeruginosa on food ingestion and assimilation of some cladocerans and copepods. Internationale Revue der gesamten Hydrobiologie 76: 37–45.

    Article  Google Scholar 

  • Herbst, D. B., 2001. Gradients of salinity stress, environmental stability and water chemistry as a template for defining habitats types and physiological strategies in inland salt waters. Hydrobiologia 466: 209–219.

    Article  CAS  Google Scholar 

  • Hutchinson, G. E., 1957. A Treatise on Limnology. I. Geography, Physics and Chemistry. Wiley, New York.

    Google Scholar 

  • Hutchinson, G. E., 1967. A Treatise on Limnology. II. Introduction to Lake Biology and the Limnoplankton. Wiley, New York.

    Google Scholar 

  • Jana, B. B., 1998. State-of-the-art of lakes in India: an overview. Archiv für Hydrobiologie – Supplementbände (Monographic Studies) 121: 1–89.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, E. Kanstrup & B. Petersen, 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia 276: 15–30.

    Article  Google Scholar 

  • Kaçaroğlu, F., M. Değirmenci & O. Cerit, 2001. Water quality problems of gypsiferous water shed: upper Kizilirmak basin, Sivas, Turkey. Water Air and Soil Pollution 128: 161–180.

    Article  Google Scholar 

  • Kasprzak, P. & R. Koschel, 2000. Lake trophic state, community structure and biomass of crustacean plankton. Verhandlungen der Internationalen Vereinigung für Limnologie 27: 773–777.

    Google Scholar 

  • Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas. Ein bestimmungswerks begundet von Max Voigt. Uberordunung. Monogononta. Gebrüder, Borntrager, Berlin, Stuttgart, Vol. I. Text: 673 pp., Vol. II. Tafelband: 234 pls.

  • La Baugh, J. W., T. C. Winter & D. O. Rosenberry, 2000. Composition of the variability in fluxes of ground water and solutes in lakes and wetlands in central North America. Verhandlungen der Internationalen Vereinigung für Limnologie 27: 420–426.

    CAS  Google Scholar 

  • Leland, H. V. & W. R. Berkas, 1998. Temporal variation in plankton assemblages and physicochemistry of Devils Lake, North Dakota. Hydrobiologia 377: 57–71.

    Article  CAS  Google Scholar 

  • Lewis Jr., W. M., 1987. Tropical limnology. Annual Review of Ecology and Systematics 18: 159–184.

    Article  Google Scholar 

  • Magnuson, J. J. & T. K. Kratz, 2000. Lakes in the landscape: approaches to regional limnology. Verhandlungen der Internationalen Vereinigung für Limnologie 27: 74–87.

    Google Scholar 

  • Maia-Barbosa, P. M., R. M. Menendez & F. A. R. Barbosa, 1998. Zooplankton composition of five lakes of the Lagoa Santa Karstic plateau. Verhandlungen der Internationalen Vereinigung für Limnologie 26: 1963–1967.

    CAS  Google Scholar 

  • Maier, G., 1996. Copepod communities in lakes of varying trophic degree. Archiv für Hydrobiologie 136: 455–465.

    Google Scholar 

  • McCauley, E. & J. Kalff, 1981. Empirical relationships between phytoplankton and zooplankton biomass in lakes. Canadian Journal of Fisheries and Aquatic Sciences 38: 458–463.

    Article  Google Scholar 

  • Michael, R. G. & B. K. Sharma, 1988. Indian Cladocera (Crustacea: Brachiopoda: Cladocera), Fauna of India and Adjacent Countries Series. Zoological Survey of India, Calcutta, 262 pp.

  • Michaloudi, E., M. Zarfdjian & P. S. Economidis, 1997. The zooplankton of Lake Mikri Prespa. Hydrobiologia 351: 77–94.

    Article  Google Scholar 

  • Moss, B., 1994. Brackish and freshwater shallow lakes—different systems or variations on the same theme. Hydrobiologia 276: 1–4.

    Article  Google Scholar 

  • Narula, K. K., N. K. Bansal, A. K. Gosain & F. Wendland, 2002. GIS based identification of risk to nutrient exposure in the large agricultural lands of India—towards better decision-making. Journal of Geographic Information and Decision Analysis 6: 82–94.

    Google Scholar 

  • Naselli-Flores, L., 1999. Limnological aspects of Sicilian reservoirs: a comparative ecosystemic approach. In Tundisi, J. G. & M. Straskraba (eds), Theoretical Reservoir Ecology and its Application. International Institute of Ecology, Brazilian Academy of Sciences and Backhuys Publishers: 283–311.

  • Naselli-Flores, L., R. Barone & M. Zunio, 1998. Distribution patterns of freshwater zooplankton in Sicily (Italy). Verhandlungen der Internationalen Vereinigung für Limnologie 26: 1973–1980.

    Google Scholar 

  • Padisák, J., 1991. Relative frequency, seasonal pattern and possible role of species rare in phytoplankton in a large shallow lake (Lake Balaton, Hungary). Verhandlungen der Internationalen Vereinigung für Limnologie 24: 989–992.

    Google Scholar 

  • Pejler, B., 1995. Relation to habitat in rotifers. Hydrobiologia 313(314): 267–278.

    Article  Google Scholar 

  • Piirsoo, K., 2001. Phytoplankton of Estonian rivers in midsummer. Hydrobiologia 444: 135–146.

    Article  Google Scholar 

  • Pinel-Alloul, B., G. Methot, G. Verreault & Y. Vigneault, 1990. Zooplankton species associations in Quebec lakes: variation with abiotic factors, including natural and anthropogenic acidification. Canadian Journal of Fisheries and Aquatic Sciences 47: 110–121.

    Article  Google Scholar 

  • Pinel-Alloul, B., T. Niyonsenga & P. Legendre, 1995. Spatial and environmental components of freshwater zooplankton structure. Ecoscience 2: 1–19.

    Google Scholar 

  • Pouriot, R., 1977. Food and feeding habits of rotifers. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 8: 243–260.

    Google Scholar 

  • Richardson, J. L., 1969. Former lake-level fluctuations - Their recognition and interpretation. Mitteilungen der Internationale Vereinigung für theoretische und angewandte Limnologie 17: 78–93.

    Google Scholar 

  • Salmaso, N., 2001. SIMDISS. Computer program – Computation of resemblance matrices and diversity indices. User’s Manual, V. 2.0e. http://www.bio.unipd.it/limno/simdiss/.

  • Scheffer, M., 1999. The effect of aquatic vegetation on turbidity; how important are the filter-feeders? Hydrobiologia 408(409): 307–316.

    Article  Google Scholar 

  • Segers, H., 1995. Rotifera 2: the Lecanidae (Monogononta). In Dumont, H. J. & T. Nogrady (eds), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 6. SPB Academic Publishing, The Hague, The Netherlands.

    Google Scholar 

  • Shaw, M. A. & J. R. M. Kelso, 1992. Environmental factors influencing zooplankton species composition of lakes in north central Ontario, Canada. Hydrobiologia 241: 141–154.

    CAS  Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in freshwaters. Archiv für Hydrobiologie 106: 433–471.

    Google Scholar 

  • Starkweather, P. L., 1980. Aspects of feeding behaviour and trophic ecology of suspension feeding. Hydrobiologia 73: 63–72.

    Article  Google Scholar 

  • Stemberger, R. S., 1974. Spatial and temporal distribution of rotifers in Milwaukee Harbor and adjacent Lake Michigan. Proceedings of 17th Conference of Great Lakes Research, International Association of Great Lakes Research: 120–134.

  • Street-Perrot, A. F. & S. P. Harrison, 1984. Temporal variations in lake levels since 30,000 yr B.P.—and index of the global hydrological cycle. Climate Processes and Climate Sensitivity 55: 118–129.

    Google Scholar 

  • Swadling, K. M., R. Pienitz & T. Nogrady, 2000. Zooplankton community composition of lakes in the Yukon and Northwest Territories (Canada): relationship to physical and chemical limnology. Hydrobiologia 431: 211–224.

    Article  Google Scholar 

  • Tallberg, P., J. Horppila, A. Vaisanen & L. Nurminen, 1999. Seasonal succession of phytoplankton and zooplankton along a trophic gradient in a eutrophic lake—implications for food web management. Hydrobiologia 412: 81–94.

    Article  CAS  Google Scholar 

  • ter Braak, C. J. F., 2002. CANOCO ver. 4.5 – A FORTRAN Program for Canonical Community Ordination. Microcomputer Power, Ithaca, New York.

    Google Scholar 

  • ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57: 255–289.

    Article  Google Scholar 

  • Waite, S., 2000. Ordination: patterns and gradients among samples. In Waite, S. (ed.), Statistical Ecology in Practice: A Guide to Analysing Environmental and Ecological Field Data. Pearson Education Limited, England: 268–302.

    Google Scholar 

  • Walker, K. F., 1981. A synopsis of ecological information on the saline lake rotifer Brachionus plicatilis Müller, 1787. Hydrobiologia 81: 159–167.

    Article  Google Scholar 

  • Walz, N., H. Elster & M. Mezger, 1987. The development of the rotifer community structure in Lake Constance during its eutrophication. Archiv für Hydrobiologie 4: 452–487.

    Google Scholar 

  • Wetzel, R. G., 1999. Plants and water in and adjacent to lakes. In Baird, A. J. & R. L. Wilby (eds), Eco-hydrology: Plants and Water in Terrestrial and Aquatic Environments. Routledge, London: 269–299.

    Google Scholar 

  • Wetzel, R. G., 2001. Limnology Lake and River Ecosystems, 3rd ed. Academic Press, London.

    Google Scholar 

  • Williams, W. D., 1978. Limnology of Victorian salt lakes. Verhandlungen der Internationalen Vereinigung für Limnologie 20: 1165–1174.

    Google Scholar 

  • Williams, W. D., 1998. Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia 381: 191–201.

    Article  Google Scholar 

  • Williams, W. D., A. J. Boulton & R. G. Taaffe, 1990. Salinity as a determinant of salt lake fauna: a question of scale. Hydrobiologia 197: 257–266.

    Article  CAS  Google Scholar 

  • Wolfinbarger, W. C., 1999. Influences of biotic and abiotic factors on seasonal succession of zooplankton in Hugo Reservoir, Oklahoma. U.S.A. Hydrobiologia 400: 13–31.

    Article  Google Scholar 

  • Wood, R. B. & J. F. Talling, 1988. Chemical and algal relationships in a salinity series of Ethiopian inland waters. Hydrobiologia 158: 29–67.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are extremely grateful to Dr. Nico Salmaso (University of Padova, Italy) for his help and valuable comments on the statistical analysis of data, especially regarding multivariate data analysis techniques. We are thankful to the Head, Department of Zoology for providing the necessary research facilities. J. A. is thankful to CSIR and INSA for providing the financial assistance to travel. Finally, but not the least, thanks are due to the organizers of the 9th ISSLR conference for providing excellent hospitality and waiver of registration fee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Arora.

Additional information

Guest Editors: J. John & B. Timms

Salt Lake Research: Biodiversity and Conservation—Selected papers from the 9th Conference of the International Society for Salt Lake Research

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arora, J., Mehra, N.K. Seasonal dynamics of zooplankton in a shallow eutrophic, man-made hyposaline lake in Delhi (India): role of environmental factors. Hydrobiologia 626, 27–40 (2009). https://doi.org/10.1007/s10750-009-9735-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9735-7

Keywords

  • Zooplankton
  • Seasonal dynamics
  • Hyposaline
  • Shallow lake
  • Eutrophication