Hydrobiologia

, Volume 628, Issue 1, pp 27–45 | Cite as

Ecological relationships between phytoplankton communities and different spatial scales in European reservoirs: implications at catchment level monitoring programmes

  • Edna Cabecinha
  • Paul J. Van den Brink
  • João Alexandre Cabral
  • Rui Cortes
  • Martinho Lourenço
  • Miguel Ângelo Pardal
Primary research paper

Abstract

Phytoplankton communities are structured by factors acting over temporal and spatial scales. Identifying which factors are driving spatial patterns in aquatic communities is the central aim of ecology. In this study, data sets of phytoplankton communities and environmental data of two Portuguese reservoirs types (lowland “riverine reservoirs” and higher altitude “artificial lake reservoirs”) were used to determine the importance of environmental variables at different spatial (geographical, regional and local) and time scales (seasons, years) on the community structure. In all the data sets, the multivariate ordination technique Canonical Correspondence Analysis (CCA) showed that regional and local scales explained the majority (9–18% and 13–19%, respectively) of the taxa variance. However, for “riverine reservoirs”, time variables were more important, explaining 27% of the variability in phytoplankton assemblages. Variance partitioning was used to assess the individual importance of the three spatial scales and time for the community structure of the two reservoir types. The majority of among-site variability (5.9–21.4%) was accounted for by time variables, with local, regional, and geographical scale variables accounting for 3.3–5.6%, 3.7–4.5% and 2.6–2.9%, respectively. The effects of different spatial scales on phytoplankton communities were clearly interrelated; thus, implying that phytoplankton assemblages are capable of detecting stress from catchment to site scales.

Keywords

Phytoplankton Ecological status Reservoirs Spatial scales Multivariate analysis Partial constrained ordination 

Notes

Acknowledgements

This study was carried out within the framework of collaboration agreements between INAG (National Water Institute) and other universities, namely the UTAD (University of Trás-os-Montes e Alto Douro) for the study of Portuguese reservoirs. We would like to thank the LABELEC staff for the environmental and phytoplankton data, namely to Engº. Lourenço Gil. The authors also thank the anonymous reviewers, and the Editor who helped to improve the manuscript.

Supplementary material

10750_2009_9731_MOESM1_ESM.pdf (97 kb)
Supplementary material 1 (PDF 97 kb)

References

  1. APHA, 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association, Washington, DC.Google Scholar
  2. Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.CrossRefGoogle Scholar
  3. Borges, P. A. F., S. Train & L. C. Rodrigues, 2008. Spatial and temporal variation of phytoplankton in two subtropical Brazilian reservoirs. Hydrobiologia 607: 63–74.CrossRefGoogle Scholar
  4. Brazner, J. C., N. P. Danz, G. J. Niemi, R. R. Regal, A. S. Trebitz, R. W. Howe, J. M. Hanowski, L. B. Johnson, J. J. H. Ciborowski, C. A. Johnston, E. D. Reavie, V. J. Brady & G. V. Sgro, 2007. Evaluation of geographic, geomorphic and human influences on Great Lakes wetland indicators: a multi-assemblage approach. Ecological Indicators 7: 610–635.CrossRefGoogle Scholar
  5. Buck, O., D. K. Niyogi & C. R. Townsend, 2004. Scale-dependence of land use effects on water quality of streams in agricultural catchments. Environmental Pollution 130: 287–299.PubMedCrossRefGoogle Scholar
  6. Cabecinha, E., R. Cortes, J. A. Cabral, T. Ferreira, M. Lourenço & M. A. Pardal, 2009. Multi-scale approach using phytoplankton as a first step towards the definition of the ecological status of reservoirs. Ecological Indicators 9(2): 240–255.CrossRefGoogle Scholar
  7. Çelik, K. & T. Ongun, 2007. The relationships between certain physical and chemichal variables and the seasonal dynamics of phytoplankton assemblages of two inlets of a shallow hypertrophic lake with different nutrient inputs. Environmental Monitoring and Assessment 124: 321–330.PubMedCrossRefGoogle Scholar
  8. Çelik, K. & T. Ongun, 2008. Spatial and temporal dynamics of the steady-state phytoplankton assemblages in a temperate shallow hypertrophic lake (Lake Manyas, Turkey). Limnology 9: 115–123.CrossRefGoogle Scholar
  9. Chen, L. D., B. J. Fu, S. R. Zhang, J. Qiu, X. D. Guo & F. L. Yang, 2002. A comparative study on nitrogen-concentration dynamics in surface water in a heterogeneous landscape. Environmental Geology 42: 424–432.CrossRefGoogle Scholar
  10. Clarke, G., M. Kerman, A. Marchetto, S. Sorvari & J. Catalan, 2005. Using diatoms to assess geographical patterns of change in high-altitude European lakes from pre-industrial times to the present day. Aquatic Sciences 67: 224–236.Google Scholar
  11. Danz, N. P., G. J. Niemi, R. R. Regal, T. P. Hollenhorst, L. B. Johnson, J. M. Hanowski, R. P. Axler, J. J. H. Ciborowski, T. Hrabik, V. J. Brady, J. R. Kelly, J. C. Brazner, R. W. Howe, C. A. Johnston & G. E. Host, 2007. Integrated gradients of anthropogenic stress in the U.S. Great Lakes basin. Environmental Management 39: 631–647.PubMedCrossRefGoogle Scholar
  12. Death, R. G. & M. K. Joy, 2004. Invertebrate community structure in streams of the Manawatu-Wanganui region, New Zealand: the roles of catchment versus reach scale influences. Freshwater Biology 49: 982–997.CrossRefGoogle Scholar
  13. Dokulil, M. T. & K. Teubner, 2000. Cyanobacterial dominance in lakes. Hydrobiologia 438: 1–12.CrossRefGoogle Scholar
  14. Downes, B. J., L. A. Barmuta, P. G. Fairweather, D. P. Faith, M. J. Keought, P. S. Lake, B. D. Mapstone & G. P. Quinn, 2002. Monitoring Ecological Impacts Concepts and Practice in Flowing Waters. Cambridge University Press, Cambridge: 434.Google Scholar
  15. Dziock, F., K. Henle, F. Foeckler, K. Follner & M. Scholz, 2006. Biological indicator systems in floodplains–a review. International Review of Hydrobiology 91: 271–291.CrossRefGoogle Scholar
  16. European Commission, 2000. Directive 2000/60/EC of The European Parliament and of the Council—Establishing a Framework for Community Action in the Field of Water Policy. Brussels, Belgium, 23 October 2000.Google Scholar
  17. Fallu, M. A., N. Allaire & R. Pienitz, 2002. Distribution of freshwater diatoms in 64 Labrador (Canada) lakes: species–environment relationships along latitudinal gradients and reconstruction models for water colour and alkalinity. Canadian Journal of Fisheries and Aquatic Sciences 59: 329–349.CrossRefGoogle Scholar
  18. Feld, C. K. & D. Hering, 2007. Community structure or function: effects of environmental stress on benthic macroinvertebrates at different spatial scales. Freshwater Biology 52: 1380–1399.CrossRefGoogle Scholar
  19. Frisell, C. A., W. L. Liss, C. E. Warren & M. D. Hurley, 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management 10: 199–214.CrossRefGoogle Scholar
  20. GIG, 2007. Lake Mediterranean GIG. Joint Research Centre, European Commission. URL: http://circa.europa.eu/Public/irc/jrc/jrc_eewai/library?l=/milestone_reports/milestone_reports_2007/lakes&vm=detailed&sb=Title.
  21. Holopainen, A., L. Lepistö, R. Niinioja & A. Rämö, 2008. Spatiotemporal and long-term variation in phytoplankton communities in the oligotrophic Lake Pyhäjärvi on the Finnish-Russian border. Hydrobiologia 599: 135–141.CrossRefGoogle Scholar
  22. IGEOE, Instituto Geográfico do Exército (Geografic Military Institute), 2006. Corine Land Cover 1990 and 2000. http://www.igeoe.pt/.
  23. INAG, Instituto Nacional da Água (National Water Institute), 2006. Relatório intercalar do projecto “Qualidade ecológica e gestão integrada de albufeiras”. (in Portuguese).Google Scholar
  24. INE, Instituto Nacional de Estatística (National Statistics Institute), 2006. http://www.ine.pt.
  25. Jonhson, R. K., M. Furse, D. Hering & L. Sandin, 2007. Ecological relationships between stream communities and spatial scale: implications for designing catchment level monitoring programmes. Freshwater Biology 52: 939–958.CrossRefGoogle Scholar
  26. Lancaster, J. & L. R. Belyea, 2006. Defining the limits to local density: alternative views of abundance–environment relationships. Freshwater Biology 51: 783–796.CrossRefGoogle Scholar
  27. Legendre, P. & L. Legendre, 1998. Numerical Ecology, 2nd ed. Elsevier, New York.Google Scholar
  28. Leira, M. & S. Sabater, 2005. Diatoms assemblages distribution in catalan rivers, NE Spain, in relation to chemical and physiographical factors. Water Research 39: 73–82.PubMedCrossRefGoogle Scholar
  29. Li, J., A. Herlihy, W. Gerth, P. Kaufmann, S. Gregory, S. Urquhart & D. P. Larsen, 2001. Variability in stream macroinvertebrates at multiple spatial scales. Freshwater Biology 46: 87–97.CrossRefGoogle Scholar
  30. Lim, D. S., J. P. Smol & M. S. Douglas, 2007. Diatom assemblages and their relation ships to lakewater nitrogen levels and other limnological variables from 36 lakes and ponds on Banks Island, NWT Canadian Artic. Hydrobiologia 586(1): 191–211.CrossRefGoogle Scholar
  31. Liu, Q., 1997. Variation portioning by partial redundancy analysis (RDA). Environmetrics 8: 75–85.CrossRefGoogle Scholar
  32. Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The invertited microscope methods of estimating algal numbers and the statistical basis of estimation by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  33. Meót, A., P. Legendre & D. Borcard, 1998. Partialling out the spatial component of ecological variation: questions and propositions in the linear modelling framework. Environmental and Ecological Statistics 5: 1–27.CrossRefGoogle Scholar
  34. Moss, B., S. Stephen, C. Alvarez, E. Becares, W. van de Bund, E. van Donk, E. de Eyto, T. Feldmann, C. Fernández-Aláez, M. Fernández-Aláez, R. J. M. Franken, F. García-Criado, E. Gross, M. Gyllstrom, L.-A. Hansson, K. Irvine, A. Järvalt, J.-P. Jenssen, E. Jeppesen, T. Kairesalo, R. Kornijow, T. Krause, H. Künnap, A. Laas, L. Lill, H. Luup, M. A. Miracle, P. Nõges, T. Nõges, M. Nykannen, O. Ott, E. T. H. M. Peeters, G. Phillips, S. Romo, J. Salujõe, M. Scheffer, K. Siewertsen, T. Tesch, H. Timm, L. Tuvikene, I. Tonno, K. Vakilainnen & T. Virro, 2003. The determination of ecological quality in shallow lakes—a tested expert system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation: Marine and Freshwater Systems 13: 507–550.CrossRefGoogle Scholar
  35. Negro, A. I. & C. De Hoyos, 2005. Relationships between diatoms and the environment in Spanish reservoirs. Limnetica 24: 133–144.Google Scholar
  36. Økland, R. H. & O. Eilertsen, 1994. Canonical correspondence analysis with variation partitioning: some comments and an application. Journal of Vegetation Science 5: 117–126.CrossRefGoogle Scholar
  37. Padisák, J., I. Grigorszky, G. Borics & É. Soróczki-Pintér, 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia 553: 1–14.CrossRefGoogle Scholar
  38. Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621(1): 1–19.CrossRefGoogle Scholar
  39. Pan, Y. D., A. T. Herlihy, P. R. Kaufmann, J. Wigington, J. van Sickle & T. Moser, 2004. Linkages among land-use water quality, physical habitat and lotic diatom assemblages: a multi-spatial scale assessment. Hydrobiologia 515: 59–73.CrossRefGoogle Scholar
  40. Podani, J., 2000. Introduction to the Exploration of Multivariate Biological Data. Backhuys Publishers, Leiden.Google Scholar
  41. Poff, N. L., 1997. Landscape filters and species traits: towards a mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.CrossRefGoogle Scholar
  42. Reynolds, C. S. & A. C. Petersen, 2000. The distribution of planktonic Cyanobacteria in Irish lakes in relation to their trophic states. Hydrobiologia 424: 91–99.CrossRefGoogle Scholar
  43. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  44. Rosenberg, D. M. & V. H. Resh, 1993. Introduction to freshwater biomonitoring and benthic macroinvertebrates. In Rosenberg, D. M. & V. H. Resh (eds), Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York: 1–9.Google Scholar
  45. Sabater, S. & J. Nolla, 1991. Distributional patterns of phytoplankton in Spanish reservoirs. First results and comparison after fifteen years. Verhandlungen der internationale Vereinigung für Limnologie 24: 1371–1375.Google Scholar
  46. Soininen, J., 2007. Environmental and spatial control of freshwater diatoms–a review. Diatom Research 22: 473–490.Google Scholar
  47. Snyder, C. D., J. A. Young, R. Villella & D. P. Lemarie, 2003. Influences of upland and riparian land use patterns on stream biotic integrity. Landscape Ecology 18: 647–664.CrossRefGoogle Scholar
  48. Statzner, B., B. Bis, S. Dolédec & P. Usseglio-Polatera, 2001. Perspectives for biomonitoring at large spatial scales: a unified measure for the functional composition of invertebrate communities in European running waters. Basic and Applied Ecology 2: 73–85.CrossRefGoogle Scholar
  49. Tavassi, M., S. S. Barinova, O. V. Anissimova, E. Nevo & S. P. Wasser, 2004. Algal indicators of environment in the Nahal Yarqon basin, Central Israel. International Journal on Algae 6: 355–382.CrossRefGoogle Scholar
  50. ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.CrossRefGoogle Scholar
  51. ter Braak, C. J. F., 1987. Ordination. In Jongman, R. H. G., C. J. F. ter Braak & O. F. R. van Tongeren (eds), Data Analysis in Community and Landscape Ecology. Pudoc, Wageningen: 91–173.Google Scholar
  52. ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO Reference Manual and User’s Guide to Canoco for Windows Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca, NY: 352.Google Scholar
  53. Tolotti, M., M. Manca, N. Angeli, G. Morabito, B. Thaler, E. Rott & E. Stuchilk, 2006. Phytoplankton and zooplankton associations in set of Alpine high altidude lakes: geographic distribution and ecology. Hydrobiologia 562: 99–122.CrossRefGoogle Scholar
  54. Van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Nederlands. Nederlands Journal Aquatic Ecology 28(1): 117–133.CrossRefGoogle Scholar
  55. Van den Brink, P. J. & B. J. Kater, 2006. Chemichal and biological evaluation of sediments from the Wadden Sea, The Netherlands. Ecotoxicology 15: 451–460.PubMedCrossRefGoogle Scholar
  56. Van den Brink, P. J., J. Hattink, F. Bransen, E. Van Donk & T. Brock, 2000. Impact of the fungicide carbendazim in freshwater microcosms. II. Zooplankton, primary producers and final conclusions. Aquatic Toxicology 48: 251–264.PubMedCrossRefGoogle Scholar
  57. Vasconcelos, V. M., 2001. Toxic freshwater cyanobacteria and their toxins in Portugal. In Chorus, I. (ed.), Cyanotoxins—Occurrence, Effects, Controlling Factors. Springer Publishers, Heidelberg: 64–69.Google Scholar
  58. Venrick, E. L., 1978. How many cells to count? In Sournia, A. (ed.), Phytoplankton Manual. UNESCO: 167–180.Google Scholar
  59. Wiley, M. J., S. L. Kohler & P. W. Seelbach, 1997. Reconciling landscape and local views of aquatic communities: lessons from Michigan trout streams. Freshwater Biology 37: 133–148.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Edna Cabecinha
    • 1
  • Paul J. Van den Brink
    • 2
    • 3
  • João Alexandre Cabral
    • 1
  • Rui Cortes
    • 4
  • Martinho Lourenço
    • 5
  • Miguel Ângelo Pardal
    • 6
  1. 1.Laboratory of Applied Ecology, CITAB—Department of Biological and Environmental EngineeringUniversity of Trás-os-Montes e Alto DouroVila RealPortugal
  2. 2.Alterra, Wageningen University and Research CentreWageningenThe Netherlands
  3. 3.Department of Aquatic Ecology and Water Quality ManagementWageningen University and Research CentreWageningenThe Netherlands
  4. 4.CITAB—Department of Forestal EngineeringUniversity of Trás-os-Montes e Alto DouroVila RealPortugal
  5. 5.CITAB—Department of GeologyUniversity of Trás-os-Montes e Alto DouroVila RealPortugal
  6. 6.IMAR (Institute of Marine Research), Department of ZoologyUniversity of CoimbraCoimbraPortugal

Personalised recommendations