Skip to main content

Advertisement

Log in

Transition from shallow lake to a wetland: a multi-proxy case study in Zalavári Pond, Lake Balaton, Hungary

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Lake Balaton, the largest shallow lake in Central Europe, has no natural outlet, therefore, underwent water level changes during its 15,000–17,000 years of history. The lake is very sensitive to both climate changes and human impacts. Surroundings have been inhabited since the Stone Age; however, heavy human impact can be recognized during the past 6000 years. In this study, we established three different stages for and reconstructed water level changes of Lake Balaton by geochemical data, subfossil Cladocera and diatom remains in the sediments of the Zalavári Pond, a part of the Kis-Balaton wetland. In 9900–8600 cal. year BP, climate was dry, water level was low, and there was a wetland in this area. Although organic matter content was low in the sediment, the ratio of Fe/Mn was high. Between 5600 and 5000 cal. year BP, water level increased, Fe/Mn ratio shows that oxygen conditions of sediments was improved in agreement with the relatively low number of diatom remains and dense chydorid remains. About 5000 cal. year BP, water level of Lake Balaton decreased as indicated by high organic content with low carbonate and high Fe/Mn ratio in the sediments (oxygen depletion). At the bottom of this section, high Fe and S concentrations showed accumulation of pyrite (FeS2) that is common in wetlands with very low redox potential. Low abundance of Cladocera remains together with rich and diverse diatom flora confirm the low water level hypothesis. Our data support that the water level of Lake Balaton was higher between 8600 and 5000 cal. year BP than it is at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bánffy, E., 2007. Settlement patterns in the Little Balaton region and the Balaton Uplands. In Zlatykó, C., I. Juhász & P. Sümegi (eds), Environmental Archaeology in Transdanubia. Varia Archaeologica Hungarica XX. Budapest: 97–105.

  • Barker, P. A., N. Roberts, H. F. Lamb, S. Kaars & A. Benkaddour, 1994. Interpretation of Holocene lake-level change from diatom assemblages in Lake Sidi Ali, Middle Atlas, Morocco. Journal of Paleolimnology 12: 223–234.

    Article  Google Scholar 

  • Battarbee, R. W., V. J. Jones, R. J. Flower, N. G. Cameron & H. Bennion, 2001. Diatoms. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments, Vol. 3. Terrestrial, Algal and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht, The Netherland: 155–202.

    Google Scholar 

  • Battarbee, R. W., A. W. Mackay, D. H. Jewson, D. B. Ryves & M. Sturm, 2005. Differential dissolution of Lake Baikal diatoms: correction factors and implications for palaeoclimatic reconstruction. Global and Planetary Change 46: 75–86.

    Article  Google Scholar 

  • Bendefy, L., 1968. A Balaton vízszintjének változásai a neoliltikumtól napjainkig. (Water level changes of Lake Balaton from Neolitic Era to The Present). Hidrológiai Közlöny 48: 257–263. (in Hungarian with English summary).

    Google Scholar 

  • Bennet, K. D., 2005. Documentation for psimpoll 4.25 and psimcomb 1.3. C program for plotting pollen diagram and analysis pollen data.

  • Bíró, K. & P. Gulyás, 1974. Zoological investigations in the open water Potamogeton perfoliatus stands of Lake Balaton. Annales Instituti Biologici (Tihany) Hungariae Academie Scientarium 41: 181–203.

    Google Scholar 

  • Bloom, A. M., K. A. Moser, D. F. Porinchu & G. M. MacDonald, 2003. Diatom-inference models for surface-water temperature and salinity developed from a 57-lake calibration set from the Sierra Nevada, California, USA. Journal of Paleolimnology 29: 235–255.

    Article  Google Scholar 

  • Buczkó, K., E. K. Magyari, P. Bitušik & A. Wacnik, 2009. Review of dated Late Quaternary palaeolimnological records in the Carpatian Region, east-central Europe. Hydrobiologia 631: 3–28.

    Article  Google Scholar 

  • Cameron, N. G., H. J. B. Birks, V. J. Jones, F. Berges, J. Catalan, R. J. Flower, J. Garcia, B. Kawecka, K. A. Koinig, A. Marchetto, P. Sánchez-Castillo, R. Schmidt, M. Šiško, N. Solovieva, E. Štefková & M. Toro, 1999. Surface-sediment and epilithic diatom pH calibration sets for remote European mountain lakes (AL:PE Project) and their comparison with the Surface Waters Acidification Programme (SWAP) calibration set. Journal of Paleolimnology 22: 291–317.

    Article  Google Scholar 

  • Cserny, T. & E. Nagy-Bodor, 2000. Limnogeology of Lake Balaton (Hungary). In Gierlowski-Kordesch, E. H. & K. R. Kelts (eds), Lake Basins Through Space and Time: AAPG Studies in Geology, Vol 46. Tulsa, OK: 605–618.

  • Cserny, T., M. Földvári, K. Ikrényi, E. Nagy-Bodor, M. Hajós, A. Szuromi-Korecz & I. Wojnárovits-Hrabka, 1991. A Balaton aljzatába mélyített Tó-24. sz. fúrás földtani vizsgálatának eredményei. (Geological investigations of the lacustrine sediments of Lake Balaton based on the borehole TÓ 24). Annual Report of the Geological Institute of Hungary: 178-239. (in Hungarian with English summary).

  • Dömötörfy, Z., D. Reeder & P. Pomogyi, 2003. Changes in the macro-vegetation of the Kis-Balaton Wetlands over the last two centuries: a GIS perspective. Hydrobiologia 506–509: 671–679.

    Article  Google Scholar 

  • Engstrom, D. R. & H. E. Wright Jr., 1984. Chemical stratigraphy of lake sediments as a record of environmental change. In Haworth, E. Y. & J. W. G. Lund (eds), Lake Sediments and Environmental History: Studies in Palaeolimnology and Palaeoecology in Honour of Winifred Tutin, Chapter. 9. Leicester University Press, Leicester: 11–67.

  • Entz, G. & O. Sebestyén, 1946. Das Leben des Balaton-Sees. Arbeiten des Ungarischen Biologischen Forschungsinstitutes 16: 179–411.

    Google Scholar 

  • Flower, R. J., 1993. Diatom preservation: experiments and observations on dissolution and breakage in modern and fossil material. Hydrobiologia 269/270: 473–484.

    Google Scholar 

  • Frey, D. G., 1950. The taxonomic and phylogenetic significance of the head pores of the Chydoridae (Cladocera). Internationale Revue der Gesamten Hydrobiologie 44: 27–50.

    Article  Google Scholar 

  • Frey, D. G., 1962. Cladocera from the Eemian interglacial of Denmark. Journal of Paleontology 36: 1133–1154.

    Google Scholar 

  • Frey, D. G., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. Journal of Paleolimnology 1: 179–191.

    Google Scholar 

  • Frey, D. G., 1991. First subfossil records of Daphnia headshields and shells (Anomopoda, Daphniidae) about 10,000 years old from northernmost Greenland, plus Alona guttata (Chydoridae). Journal of Paleolimnology 6: 193–197.

    Article  Google Scholar 

  • Gąsiorowski, M. & M. Kupryjanowicz, 2009. Lakepeat bog transformation recorded in the sediments of the Stare Biele mire (Northeastern Poland). Hydrobiologia 631: 143–154.

    Article  CAS  Google Scholar 

  • Gasse, F., S. Juggins & L. B. Khelifa, 1995. Diatombased transfer functions for inferring past hydrochemical characteristics of African lakes. Palaeogeography, Palaeoclimatology, Palaeoecology 117: 31–54.

    Article  Google Scholar 

  • Goulden, C. E. & D. G. Frey, 1963. The occurrence and significance of lateral head pores in the genus Bosmina (Cladocera). Internationale Revue der Gesamten Hydrobiologie 48: 513–522.

    Article  Google Scholar 

  • G.-Tóth, L., 1992. Limiting effect of abioseston on food ingestion, postembryonic development time and fecundity of daphnids in Lake Balaton (Hungary). Journal of Plankton Research 14: 435–446.

    Article  Google Scholar 

  • Gulyás, P. & L. Forró, 1999. Az ágascsápú rákok (Cladocera) kishatározója (A guide for the identification of Cladocera occurring in Hungary). In Vízi Természet- és Környezetvédelem (In Freshwater Nature Conservation and Environmental Protection), Vol. 9. KGI, Budapest, 2nd edition. (in Hungarian).

  • Hajnal, É. & J. Padisák, 2008. Analysis of long-term ecological status of Lake Balaton based on the ALMOBAL phytoplankton database. Hydrobiologia 599: 227–237.

    Article  Google Scholar 

  • Harmsworth, R. V., 1968. The developmental history of Blelham Tarn (England) as shown by animal microfossils, with special reference to the Cladocera. Ecological Monographs 38: 223–241.

    Article  Google Scholar 

  • Heinsalu, A., H. Luup, T. Alliksaar, P. Noges & T. Noges, 2008. Water level changes in a large shallow lake as reflected by the plankton:peryphyton-ratio of sedimentary diatoms. Hydrobiologia 599: 23–30.

    Article  Google Scholar 

  • Heiri, O., A. F. Lotter & G. Lemcke, 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.

    Article  Google Scholar 

  • Hofmann, W., 1998. Cladocerans and chironomids as indicators of lake level changes in north temperate lakes. Journal of Paleolimnology 19: 55–62.

    Article  Google Scholar 

  • Hofmann, W., 2001. Late-Glacial/Holocene succession of the chironomid and cladoceran fauna of the Soppensee (Central Switzerland). Journal of Paleolimnology 25: 411–420.

    Article  Google Scholar 

  • Hofmann, W., 2003. The long-term succession of high-altitude cladoceran assemblages: a 9000-year record from Sägistalsee (Swiss Alps). Journal of Paleolimnology 30: 291–296.

    Article  Google Scholar 

  • Houk, V., 2003. Atlas of freshwater centric diatoms with a brief key and descriptions. Part I. Melosiraceae, Orthoseiraceae, Paraliaceae and Aulacoseiraceae. In Czech Phycology Supplement, Vol. 1. Czech Phycological Society, Praha, Palacký University, Olomouc: 1–27.

  • Istvánovics, V., A. Osztoics & M. Honti, 2004. Dynamics and ecological significance of daily internal load of phosphorus in shallow Lake Balaton, Hungary. Freshwater Biology 49: 232–252.

    Article  Google Scholar 

  • Istvánovics, V., A. Clement, L. Somlyódy, A. Specziár, L. G. Tóth & J. Padisák, 2007. Updating water quality targets for shallow Lake Balaton (Hungary), recovering from eutrophication. Hydrobiologia 581: 305–318.

    Article  CAS  Google Scholar 

  • Istvánovics, V., M. Honti, A. Kovács & A. Osztoics, 2008. Distribution of submerged macrophytes along environmental gradients in large, shallow Lake Balaton (Hungary). Aquatic Botany 88: 317–330.

    Article  Google Scholar 

  • Jakab, G., P. Sümegi & Z. Szántó, 2005. Késő-glaciális és holocén vízszintingadozások a Szigligeti-öbölben (Balaton) makrofosszília vizsgálatok eredményei alapján–(Late Glacial and Holocene water level changes in the Szigliget Bay, Lake Balaton based on macrofossil investigations). Földtani Közlöny 135: 404–432. (in Hungarian).

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, S. Amsinck, F. Landkildehus, T. Lauridsen & S. F. Mitchell, 2002. Reconstructing the historical changes in Daphnia mean size and planktivorous fish abundance in lakes from the size of Daphnia ephippia in the sediment. Journal of Paleolimnology 27: 133–143.

    Article  Google Scholar 

  • Juhász I., P. Sümegi, Zs. Szántó, É. Svingor, Molnár, M. & G. Jakab, 2007. The Little Balaton region and the Balaton uplands. In Zatykó, Cs., I. Juhász & P. Sümegi (eds), Environmental Archaeology in Transdanubia. Varia Archaeologica Hungarica 20, Budapest: 27–175.

  • Kearns, C., N. Hairston & D. Kesler, 1996. Particle transport by benthic invertebrates: its role in egg bank dynamics. Hydrobiologia 332: 63–70.

    Article  Google Scholar 

  • Kenney, W. F., M. N. Waters, C. L. Schelske & M. Brenner, 2002. Sediment records of phosphorus-driven shifts to phytoplankton dominance in shallow Florida lakes. Journal of Paleolimnology 27: 367–377.

    Article  Google Scholar 

  • Kindt, R. & R. Coe, 2005. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. Nairobi (Kenya): World Agroforestry Centre (ICRAF). ISBN 92-9059-179-X.

  • Kobayasi, H., M. Idei, S. Mayama, T. Nagumo & K. Osada, 2006. H. Kobayasi’s Atlas of Japanese Diatoms Based on Electron Microscopy, Vol. 1. Uchida Rokakuho Publishing Co., Ltd, Tokyo: 1–533.

    Google Scholar 

  • Koinig, K. A., W. Shotyk, A. F. Lotter, C. Ohlendorf & M. Sturm, 2003. 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake–the role of climate, vegetation, and land-use history. Journal of Paleolimnology 30: 307–320.

    Article  Google Scholar 

  • Korhola, A. & M. Rautio, 2001. Cladocera and other Branchiopod Crustaceans. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments, Vol. 4. Zoological Indicators. Kluwer Academic Publishers, Dordrecht, The Netherland: 5–41.

    Google Scholar 

  • Korhola, A., H. Olander & T. Blom, 2000. Cladoceran and chironomid assemblages as qualitative indicators of water depth in subarctic Fennoscandian lakes. Journal of Paleolimnology 24: 43–54.

    Article  Google Scholar 

  • Korhola, A., M. Tikkanen & J. Weckström, 2005. Quantification of Holocene lake-level changes in Finnish Lapland using a cladocera—lake depth transfer model. Journal of Paleolimnology 34: 175–190.

    Article  Google Scholar 

  • Köster, D., J. M. J. Racca & R. Pienitz, 2004. Diatom-based inference models and reconstructions revisited: methods and transformations. Journal of Paleolimnology 32: 233–246.

    Article  Google Scholar 

  • Krammer, K., 2000. The genus Pinnularia. In Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats, Vol. 1. A.R.G. Gantner Verlag, K.G. Ruggell: 1–703.

  • Krammer, K. & H. Lange-Bertalot, 1986–1991. Bacillariophyceae. In Süsswasserflora von Mitteleuropa., Vol. 1–4. Gustav Fischer Verlag, Stuttgart, Jena.

  • Lange-Bertalot, H., 1993. 85 Neue Taxa und über 100 weitere neu definierte Taxa ergänzend zur Süsswasserflora von Mitteleuropa, Vol. 2/1–4. Bibliotheca Diatomologica 27: 454.

    Google Scholar 

  • Lange-Bertalot, H., 2001. Diatoms of Europe. Navicula sensu stricto 10 Genera separated from Navicula sensu lato Frustulia. In Lange-Bertalot, H. (ed.), Diatoms of the European Inland Waters and Comparable Habitats, Vol. 2. A.R.G. Gantner Verlag, K.G. Ruggell.

    Google Scholar 

  • Lange-Bertalot, H. & K. Krammer, 1989. Achnanthes eine Monographie der Gattung. In Lange-Bertalot, H. (ed.), Bibliotheca Diatomologica, Vol. 18. J. Cramer, Berlin, Stuttgart: 1–393.

    Google Scholar 

  • Lange-Bertalot, H. & D. Metzeltin, 1996. Indicators of oligotrophy. 800 taxa representative of three ecologically distinct lake types. In Lange-Bertalot, H. (ed.), Iconographia Diatomologica, Annotated Diatom Micrographs, Vol. 2. Koeltz Scientific Books, Königstein: 1–90.

    Google Scholar 

  • Lóczy, L., 1916. Die geologischen Formationen der Balatongegend und ihre regionale Tektonik (Erste Sektion). Physische Geographie des Balatonsees und seiner Umgebung (Erster Band). Die Geomorphologie des Balatonsees und seiner Umgebung (Erster Teil). Resultate der Wissenschaftlichen Erforschung des Balatonsees. Balaton-ausshusse der ung. Geographischen Gesellschaft. Wien.

  • Medzihradszky, Zs., 2005. Holocene vegetation history and human activity in the Kis-Balaton area, Western Hungary. Studia Botanica Hungarica 36: 77–100.

    Google Scholar 

  • Moss, B., D. Stephen, C. Alvarez, E. Becares, W. Van, S. E. de Bund, E. Collings, E. Van Donk, T. De Eyto, C. Feldmann, M. Fernandez-Alaez, R. J. M. Fernandez-Alaez, F. Franken, E. M. Garcia-Criado, M. Gross, L. A. Gyllstrom, K. Hansson, A. Irvine, J. P. Jarvalt, E. Jensen, T. Jeppesen, R. Kairesalo, T. Kornijow, H. Krause, A. Kunnap, E. Laas, B. Lille, H. Lorens, M. R. Luup, P. Miracle, T. Noges, M. Noges, I. Nykanen, W. Ott, E. T. H. M. Peczula, G. Peeters, S. Phillips, V. Romo, J. Russell, M. Salujoe, K. Scheffer, H. Siewertsen, C. Smal, H. Tesch, L. Timm, I. Tuvikene, T. Tonno, E. Virro, D. Vicente & Wilson, 2003. The determination of ecological status in shallow lakes -a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation-Marine and Freshwater Ecosystems 13: 507–549.

    Article  Google Scholar 

  • Newberry, T. L. & C. L. Schelske, 1986. Biogenic silica record in the sediments of Little Round Lake, Ontario. Hydrobiologia 143: 293–300.

    Article  CAS  Google Scholar 

  • Oksanen, J., R. Kindt, P. Legendre, B. O’Hara & M. H. H. Stevens, 2007, vegan: Community Ecology Package. R package version 1.8-8.

  • Padisák, J. & C. S. Reynolds, 2003. Shallow lakes: the absolute, the relative, the functional and the pragmatic. Hydrobiologia 506–509: 1–11.

    Article  Google Scholar 

  • Ponyi, J. E., 1971. Investigation on crustacean and molluscan remains in the upper sedimentary layer of Lake Balaton. Annales Instituti Biologici (Tihany) Hungaricae Academie Scientarium 38: 183–197.

    Google Scholar 

  • R Development Core Team, 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

  • Reed, J. M., 1998. Diatom preservation in the recent sediment record of Spanish saline lakes: implications for palaeoclimate study. Journal of Paleolimnology 19: 129–137.

    Article  Google Scholar 

  • Rooney, N., J. Kalff & C. Habel, 2003. The role of submerged macrophyte beds in phosphorus and sediment accumulation in Lake Memphremagog, Quebec, Canada. Limnology and Oceanography 48: 1927–1937.

    Article  CAS  Google Scholar 

  • Sági, K., 1968. A Balaton vízállástendenciái 1863-i a történet és kartográfiai adatok tükrében (Water level trends of Lake Balaton before 1863, as revealed by historical and cartographical data. Veszprém Megyei Múzeumok Közleményei 7: 441–468. (in Hungarian).

    Google Scholar 

  • Sarmaja-Korjonen, K., 2001. Correlation of fluctuations in cladoceran planktonic: littoral ratio between three cores from a small lake in southern Finland: Holocene water-level changes. Holocene 11: 53–63.

    Article  Google Scholar 

  • Sarmaja-Korjonen, K. & P. Alhonen, 1999. Cladoceran and diatom evidence of lake-level fluctuations from a Finnish lake and the effect of aquatic-moss layers on microfossil assemblages. Journal of Paleolimnology 22: 277–290.

    Article  Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman and Hall, London.

    Google Scholar 

  • Sebestyén, O., 1969a. Kladocera tanulmányok a Balatonon III. Tótörténeti előtanulmányok I—Cladocera studies in Lake Balaton III. Preliminary studies for lake history investigations. Annales Instituti Biologici (Tihany) Hungaricae Academie Scientarium 36: 229–256. (in Hungarian with English abstract).

    Google Scholar 

  • Sebestyén, O., 1969b. Kladocera tanulmányok a Balatonon IV. Negyedkori maradványok a Balaton üledékében I—Cladocera studies in Lake Balaton IV. Quaternary remains in the sediment of Lake Balaton I. Annales Instituti Biologici (Tihany) Hungaricae Academie Scientarium 36: 229–256. (in Hungarian with English abstract).

    Google Scholar 

  • Sebestyén, O., 1970. Kladocera tanulmányok a Balatonon IV. Negyedkori maradványok a Balaton üledékében II—Cladocera studies in Lake Balaton IV. Quaternary remains in the sediment of Lake Balaton II. Annales Instituti Biologici (Tihany) Hungaricae Academie Scientarium 37: 247–279. (in Hungarian with English abstract).

    Google Scholar 

  • Sebestyén, O., 1971. Kladocera tanulmányok a Balatonon IV. Negyedkori maradványok a Balaton üledékében III—Cladocera studies in Lake Balaton IV. Quaternary remains in the sediment of Lake Balaton III. Annales Instituti Biologici (Tihany) Hungaricae Academie Scientarium 38: 227–268. (in Hungarian with English abstract).

    Google Scholar 

  • Serlegi, G., 2007. A balatonkeresztúri “vízmérce”: Környezetrégészeti információk a Balaton déli partjának római kori tőrténetéhez (The “stream gauge” of Balatonkeresztúr. Environmental archaeological data on the Roman Period history of the southern shore of Lake Balaton), In Bíró, Sz. (ed.), FiRKáK I. Fiatal Római Koros Kutatók I. konferncia kötete (First conference book of young scientist of Roman Periods): 297–317. (in Hungarian).

  • Siver, P. A., 1999. Development of paleolimnological inference models for pH, total nitrogen and specific conductivity based on planktonic diatoms. Journal of Paleolimnology 21: 45–60.

    Article  Google Scholar 

  • Smol, J. A., 2008. Pollution of lakes and rivers. A paleoenvironmental perspective, 2nd ed. Blackwell Publishing, Malden.

    Google Scholar 

  • Smol, J. & M. M. Boucherle, 1985. Postglacial changes in algal and cladocerans assemblages in Little Round Lake, Ontario. Hydrobiologia 103: 25–49.

    Google Scholar 

  • SPSS Inc., 1998. SPSS for Windows Rel. 8.0. SPSS Inc., Chicago.

    Google Scholar 

  • Stuiver, M., P. J. Reimer & R. W. Reimer, 2005. CALIB 5.0. http://www.calib.qub.ac.uk/crev50/.

  • Sümegi, P., E., Bodor, I. Juhász, Z. Hunyadfalvi, K. Herbich, S. Molnár & G. Timár, 2007. A Balaton déli partján feltárt régészeti lelőhelyek környezettörténeti feldolgozása (Paleoenvironmental study of archeological sites in the south shore of the lake Balaton). In Belényesy K., Sz. Honti & V. Kiss (eds), Rolling Time. Excavations on the M7 Motorway on County Somogy Between Zamárdi and Ordacsehi. Somogy megyei Múzeumok Igazgatósága—MTA Régészeti Intézete: 241–253. (in Hungarian).

  • Tátrai, I., K. Mátyás, J. Korponai, G. Paulovits & P. Pomogyi, 2000. The role of Kis-Balaton Water protection system in the control of water quality of Lake Balaton. Ecological Engineering 16: 73–78.

    Article  Google Scholar 

  • Tátrai, I., V. Istvánovics, L. G. Tóth & I. Kóbor, 2008. Management measures and long-term water quality changes in Lake Balaton (Hungary). Fundamental and Applied Limnology (Archive für Hydrobiologie) 172: 1–11.

    Article  CAS  Google Scholar 

  • Troel-Smith, J., 1955. Karakterisering af løse jordarter (Characterisation of unconsolidated sediments). Danmarks geologiske undersřgelse, Raekke 4: 1–73.

    Google Scholar 

  • Tullner, T. & T. Cserny, 2003. New aspects of lake-level changes: Lake Balaton, Hungary. Acta Geologica Hungarica 46: 215–238.

    Article  Google Scholar 

  • Väliranta, M., S. Kultti, M. Nyman & K. Sarmaja-Korjonen, 2005. Holocene development of aquatic vegetation in shallow Lake Njargajavri, Finnish Lapland, with evidence of water-level fluctuations and drying. Journal of Paleolimnology 34: 203–215.

    Article  Google Scholar 

  • Virág, Á., 1998. A Balaton múltja és jelene (The Past and the Present of Lake Balaton). Egri Nyomda Kft. (in Hungarian).

  • Virág, Á., 2005. History of River Sió and Lake Balaton (1055–2005). Közlekedési Dokumentációs Kft. (in Hungarian).

  • Wessels, M., K. Mohaupt, R. Kömmerlin & A. Lenhard, 1999. Reconstructing past eutrophication trends from diatoms and biogenic silica in the sediment and the pelagic zone of Lake Constance, Germany. Journal of Paleolimnology 21: 171–192.

    Article  Google Scholar 

  • Whiteside, M. C., J. B. Williams & C. P. White, 1978. Seasonal Abundance and Pattern of Chydorid, Cladocera in Mud and Vegetative Habitats. Ecology 59: 1177–1188.

    Article  Google Scholar 

  • Whitmore, T. J., M. Brenner & C. L. Schelske, 1996. Highly variable sediment distribution in shallow, wind-stressed lakes: a case for sediment-mapping surveys in paleolimnological studies. Journal of Paleolimnology 15: 207–221.

    Article  Google Scholar 

  • Zólyomi, B., 1952. History of evolution of the vegetation cover in Hungary from the last ice age (in Hungarian). MTA Biológiai Osztályának Közleményei 1: 491–543.

    Google Scholar 

  • Zólyomi, B., 1995. Opportunities for pollen stratigraphic analysis of shallow lake sediments: the example of Lake Balaton. GeoJournal 36: 237–241.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank their colleagues from Laboratory of West-Transdanubian District Water Authority for their help with data collection and collaboration. We would like to express our special thanks for Kaarina Sarmaja-Korjonen for her valuable comment. This study was financially supported by Hungarian National Science Foundation, OTKA-T 049098 and Hungarian National Research and Development Program BALÖKO 3B022/04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Korponai.

Additional information

Handling editor: J. Padisak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korponai, J., Braun, M., Buczkó, K. et al. Transition from shallow lake to a wetland: a multi-proxy case study in Zalavári Pond, Lake Balaton, Hungary. Hydrobiologia 641, 225–244 (2010). https://doi.org/10.1007/s10750-009-0087-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-0087-0

Keywords

Navigation