Skip to main content

Advertisement

Log in

Global change and food webs in running waters

  • GLOBAL CHANGE AND RIVER ECOSYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Riverine habitats are vulnerable to a host of environmental stressors, many of which are increasing in frequency and intensity across the globe. Climate change is arguably the greatest threat on the horizon, with serious implications for freshwater food webs via alterations in thermal regimes, resource quality and availability, and hydrology. This will induce radical restructuring of many food webs, by altering the identity of nodes, the strength and patterning of interactions and consequently the dynamics and architecture of the trophic network as a whole. Although such effects are likely to be apparent globally, they are predicted to be especially rapid and dramatic in high altitude and latitude ecosystems, which represent ‘sentinel systems’. The complex and subtle connections between members of a food web and potential synergistic interactions with other environmental stressors can lead to seemingly counterintuitive responses to perturbations that cannot be predicted from the traditional focus of studying individual species in isolation. In this review, we highlight the need for developing new network-based approaches to understand and predict the consequences of global change in running waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allan, J. D., M. S. Wipfli, J. P. Caouette, A. Prussian & J. Rodgers, 2003. Influence of streamside vegetation on inputs of terrestrial invertebrates to salmonid food webs. Canadian Journal of Fisheries and Aquatic Sciences 60: 309–320.

    Article  Google Scholar 

  • Atkinson, D., 1994. Temperature and organism size – a biological law for ectotherms. Advances in Ecological Research 25: 1–58.

    Article  Google Scholar 

  • Barnett, T. P., J. C. Adam & D. P. Lettenmaier, 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438: 303–309.

    Article  CAS  PubMed  Google Scholar 

  • Beckerman, A. P., O. L. Petchey & P. H. Warren, 2006. Foraging biology predicts food web complexity. Proceedings of the National Academy of Sciences of the United States of America 103: 13745–13749.

    Article  CAS  PubMed  Google Scholar 

  • Bergmann, C., 1847. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien 3: 595–708.

    Google Scholar 

  • Berlow, E. L., J. A. Dunne, N. D. Martinez, P. B. Stark, R. J. Williams & U. Brose, 2009. Simple prediction of interaction strengths in complex food webs. Proceedings of the National Academy of Sciences of the United States of America 106: 187–191.

    Article  CAS  PubMed  Google Scholar 

  • Boulton, A. J., 2003. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshwater Biology 48: 1173–1185.

    Article  Google Scholar 

  • Brose, U., T. Jonsson, E. L. Berlow, P. Warren, C. Banasek-Richter, L. F. Bersier, J. L. Blanchard, T. Brey, S. R. Carpenter, M. F. C. Blandenier, L. Cushing, H. A. Dawah, T. Dell, F. Edwards, S. Harper-Smith, U. Jacob, M. E. Ledger, N. D. Martinez, J. Memmott, K. Mintenbeck, J. K. Pinnegar, B. C. Rall, T. S. Rayner, D. C. Reuman, L. Ruess, W. Ulrich, R. J. Williams, G. Woodward & J. E. Cohen, 2006. Consumer–resource body-size relationships in natural food webs. Ecology 87: 2411–2417.

    Article  PubMed  Google Scholar 

  • Brown, J. H. & J. F. Gillooly, 2003. Ecological food webs: high-quality data facilitate theoretical unification. Proceedings of the National Academy of Sciences of the United States of America 100: 1467–1468.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Article  Google Scholar 

  • Brown, L. E., D. M. Hannah & A. M. Milner, 2007. Vulnerability of alpine stream biodiversity to shrinking glaciers and snowpacks. Global Change Biology 13: 958–966.

    Article  Google Scholar 

  • Burgmer, T., H. Hillebrand & M. Pfenninger, 2007. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151: 93–103.

    Article  CAS  PubMed  Google Scholar 

  • Cardinale, B. J., D. S. Srivastava, J. E. Duffy, J. P. Wright, A. L. Downing, M. Sankaran & C. Jouseau, 2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443: 989–992.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter, S. R., S. G. Fisher, N. B. Grimm & J. F. Kitchell, 1992. Global change and freshwater ecosystems. Annual Review of Ecology and Systematics 23: 119–139.

    Article  Google Scholar 

  • Cotrufo, M. F., P. Ineson & A. Scott, 1998. Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology 4: 43–54.

    Article  Google Scholar 

  • Cross, W. F., J. P. Benstead, A. D. Rosemond & J. B. Wallace, 2003. Consumer–resource stoichiometry in detritus-based streams. Ecology Letters 6: 721–732.

    Article  Google Scholar 

  • Cross, W. F., J. P. Benstead, P. C. Frost & S. A. Thomas, 2006. Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives (vol 50, pg 1895, 2005). Freshwater Biology 51: 986–987.

    Article  CAS  Google Scholar 

  • Darwin, C., 1920. The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. 6th ed. John Murray, London.

    Google Scholar 

  • Daufresne, M. & P. Boet, 2007. Climate change impacts on structure and diversity of fish communities in rivers. Global Change Biology 13: 2467–2478.

    Article  Google Scholar 

  • Daufresne, M. K., K. Lengfellner & U. Sommer, 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106: 12788–12793.

    Article  CAS  PubMed  Google Scholar 

  • Deutsch, C. A., J. J. Tewksbury, R. B. Huey, K. S. Sheldon, C. K. Ghalambor, D. C. Haak & P. R. Martin, 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America 105: 6668–6672.

    Article  CAS  PubMed  Google Scholar 

  • Doak, D. F., D. Bigger, E. K. Harding, M. A. Marvier, R. E. O’Malley & D. Thomson, 1998. The statistical inevitability of stability–diversity relationships in community ecology. American Naturalist 151: 264–276.

    Article  CAS  PubMed  Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Leveque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. J. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182.

    Article  PubMed  Google Scholar 

  • Durance, I. & S. J. Ormerod, 2007. Effects of climatic variation on upland stream invertebrates over a 25 year period. Global Change Biology 13: 942–957.

    Article  Google Scholar 

  • Durant, J. M., D. O. Hjermann, G. Ottersen & N. C. Stenseth, 2007. Climate and the match or mismatch between predator requirements and resource availability. Climate Research 33: 271–283.

    Article  Google Scholar 

  • Emmerson, M., T. M. Bezemer, M. D. Hunter & T. H. Jones, 2005a. Global change alters the stability of food webs. Global Change Biology 11: 490–501.

    Article  Google Scholar 

  • Emmerson, M. C., J. M. Montoya, G. Woodward, 2005b. Body size, interaction strength, and food web dynamics. In de Ruiter, P., V. Wolters & J. C. Moore (eds), Dynamic Food Webs: Multispecies Assemblages, Ecosystem Development and Environmental Change. Elsevier: 167–178.

  • Finlay, B. J., 2002. Global dispersal of free-living microbial eukaryote species. Science 296: 1061–1063.

    Article  CAS  PubMed  Google Scholar 

  • Finlay, B. J. & G. F. Esteban, 2007. Body size and biogeography. In Hildrew, A. G., D. Raffaelli & R. Edmonds-Brown (eds), Body Size: The Structure and Function of Aquatic Ecosystems. Cambridge University Press, Cambridge: 167–185.

    Chapter  Google Scholar 

  • Foissner, W., 1999. Protist diversity: estimates of the near-imponderable. Protist 150: 363–368.

    Article  CAS  PubMed  Google Scholar 

  • Friberg, N., J. B. Dybkjaer, J. S. Olafsson, G. M. Gislason, S. E. Larsen, & T. Lauridsen, 2009. Relationships between structure and function in streams contrasting in temperature. Freshwater Biology 54: 2051–2068.

    Article  CAS  Google Scholar 

  • Frost, P. C., J. P. Benstead, W. F. Cross, H. Hillebrand, J. H. Larson, M. A. Xenopoulos & T. Yoshida, 2006. Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecology Letters 9(7): 774–779.

    Article  PubMed  Google Scholar 

  • Giller, P. S. & B. Malmqvist, 2005. The Biology of Streams and Rivers. Oxford University Press, New York.

    Google Scholar 

  • Giller, P. S., H. Hillebrand, U.-G. Berninger, M. O. Gessner, S. Hawkins, P. Inchausti, C. Inglis, H. Leslie, B. Malmqvist, M. T. Monaghan, P. J. Morin & G. O’Mullan, 2004. Biodiversity effects on ecosystem functioning: emerging issues and their experimental test in aquatic environments. Oikos 104: 423–436.

    Article  Google Scholar 

  • Gillooly, J. F., 2000. Effect of body size and temperature on generation time in zooplankton. Journal of Plankton Research 22: 241–251.

    Article  Google Scholar 

  • Gjerløv, C., A. G. Hildrew & J. I. Jones, 2003. Mobility of stream invertebrates in relation to disturbance and refugia: a test of habitat templet theory. Journal of the North American Benthological Society 22: 207–223.

    Article  Google Scholar 

  • Graca, M. A. S., F. Barlocher & M. O. Gessner. 2005. Methods to Study Litter Decomposition: A Practical Guide. Springer.

  • Guan, R. Z. & P. R. Wiles, 1997. Ecological impact of introduced crayfish on benthic fishes in a British lowland river. Conservation Biology 11: 641–647.

    Article  Google Scholar 

  • Hannah, D. M., L. E. Brown, A. M. Milner, A. M. Gurnell, G. R. McGregord, G. E. Petts, B. P. G. Smith & D. L. Snook, 2007. Integrating climate–hydrology–ecology for alpine river systems. Aquatic Conservation – Marine and Freshwater Ecosystems 17: 636–656.

    Article  Google Scholar 

  • Harris, R. M. L., P. D. Armitage, A. M. Milner & M. E. Ledger, 2007. Replicability of physicochemistry and macroinvertebrate assemblages in stream mesocosms: implications for experimental research. Freshwater Biology 52: 2434–2443.

    Article  Google Scholar 

  • Heino, J., R. Virkkala & H. Toivonen, 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews 84: 39–54.

    Article  PubMed  Google Scholar 

  • Hildrew, A. G. & Giller, P. S., 1994. Patchiness, species interactions and disturbance in the stream benthos. In Giller, P., A. Hildrew & D. Raffaelli (eds), Ecology: Scale Pattern and Process. Blackwell, Oxford: 21–62.

    Google Scholar 

  • Hildrew, A. G., G. Woodward, J. H. Winterbottom & S. Orton, 2004. Strong density dependence in a predatory insect: large-scale experiments in a stream. Journal of Animal Ecology 73: 448–458.

    Article  Google Scholar 

  • Hillebrand, H. & A. I. Azovsky, 2001. Body size determines the strength of the latitudinal diversity gradient. Ecography 24: 251–256.

    Google Scholar 

  • Hillebrand, H., F. Watermann, R. Karez & U. G. Berninger, 2001. Differences in species richness patterns between unicellular and multicellular organisms. Oecologia 126: 114–124.

    Article  Google Scholar 

  • Hladyz, S., M. O. Gessner, P. S. Giller, J. Pozo & G. Woodward, 2009. Resource quality and stoichiometric constraints on stream ecosystem functioning. Freshwater Biology 54: 957–970.

    Article  CAS  Google Scholar 

  • Hogg, I. D. & D. D. Williams, 1996. Response of stream invertebrates to a global-warming thermal regime: an ecosystem-level manipulation. Ecology 77: 395–407.

    Article  Google Scholar 

  • Huey, R. B. & R. D. Stevenson, 1979. Integrating thermal physiology and ecology of ectotherms – discussion of approaches. American Zoologist 19: 357–366.

    Google Scholar 

  • Ings, T. C., J. M. Montoya, J. Bascompte, N. Bluthgen, L. Brown, C. F. Dormann, F. Edwards, D. Figueroa, U. Jacob, J. I. Jones, R. B. Lauridsen, M. E. Ledger, H. M. Lewis, J. M. Olesen, F. J. F. Van Veen, P. H. Warren & G. Woodward, 2009. Ecological networks – beyond food webs. Journal of Animal Ecology 78(1): 253–269.

    Article  PubMed  Google Scholar 

  • IPCC, 2002. Climate Change 2002: The Scientific Basis. Cambridge University Press, Cambridge.

  • IPCC, 2007. Climate Change 2007: The Physical Sciences Basis. In Parry, M. L., O. F. Canziani, J. P. Palutikof, P. J. van der Linden & C. E. Hanson, (ed.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

  • Kominoski, J. S., P. A. Moore, R. G. Wetzel & N. C. Tuchman, 2007. Elevated CO2 alters leaf-litter-derived dissolved organic carbon: effects on stream periphyton and crayfish feeding preference. Journal of the North American Benthological Society 26: 663–672.

    Article  Google Scholar 

  • Ledger, M. E. & A. G. Hildrew, 2001. Recolonization by the benthos of an acid stream following a drought. Archiv Fur Hydrobiologie 152: 1–17.

    Google Scholar 

  • Ledger, M. E., R. M. L. Harris, P. D. Armitage & A. M. Milner, 2008. Disturbance frequency influences patch dynamics in stream benthic algal communities. Oecologia 155: 809–819.

    Article  PubMed  Google Scholar 

  • Malmqvist, B. & S. Rundle, 2002. Threats to the running water ecosystems of the world. Environmental Conservation 29: 134–153.

    Article  Google Scholar 

  • Mann, D. G. & S. J. M. Droop, 1996. Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336: 19–32.

    Google Scholar 

  • Matzinger, A., M. Schmid, E. Veljanoska-Sarafiloska, S. Patceva, D. Guseska, B. Wagner, B. Muller, M. Sturm & A. Wuest, 2007. Eutrophication of ancient Lake Ohrid: global warming amplifies detrimental effects of increased nutrient inputs. Limnology and Oceanography 52: 338–353.

    Article  CAS  Google Scholar 

  • McCann, K. S., 2000. The diversity–stability debate. Nature 405: 228–233.

    Article  CAS  PubMed  Google Scholar 

  • McKee, D., D. Atkinson, S. Collings, J. Eaton, I. Harvey, T. Heyes, K. Hatton, D. Wilson & B. Moss, 2002. Macro-zooplankter responses to simulated climate warming in experimental freshwater microcosms. Freshwater Biology 47: 1557–1570.

    Article  Google Scholar 

  • Millien, V., S. K. Lyons, L. Olson, F. A. Smith, A. B. Wilson & Y. Yom-Tov, 2006. Ecotypic variation in the context of global climate change: revisiting the rules. Ecology Letters 9: 853–869.

    Article  PubMed  Google Scholar 

  • Milner, A. M., E. E. Knudsen, C. Soiseth, A. L. Robertson, D. Schell, I. T. Phillips & K. Magnusson, 2000. Colonization and development of stream communities across a 200-year gradient in Glacier Bay National Park, Alaska. U.S.A. Canadian Journal of Fisheries and Aquatic Sciences 57: 2319–2335.

    Article  Google Scholar 

  • Milner, A. M., A. E. Robertson, K. Monaghan, A. J. Veal & E. A. Flory, 2008. Colonization and development of a stream community over 28 years, Wolf Point Creek in Glacier Bay, Alaska. Frontiers in Ecology and Environment 6: 413–419.

    Article  Google Scholar 

  • Mouthon, J. & M. Daufresne, 2006. Effects of the 2003 heatwave and climatic warming on mollusc communities of the Saone: a large lowland river and of its two main tributaries (France). Global Change Biology 12: 441–449.

    Article  Google Scholar 

  • Neutel, A. M., J. A. P. Heesterbeek & P. C. de Ruiter, 2002. Stability in real food webs: weak links in long loops. Science 296: 1120–1123.

    Article  CAS  PubMed  Google Scholar 

  • Neutel, A. M., J. A. P. Heesterbeek, J. van de Koppel, G. Hoenderboom, A. Vos, C. Kaldeway, F. Berendse & P. C. de Ruiter, 2007. Reconciling complexity with stability in naturally assembling food webs. Nature 449: 599-U511.

    Article  CAS  Google Scholar 

  • Norby, R. J., M. F. Cotrufo, P. Ineson, E. G. O’Neill & J. G. Canadell, 2001. Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127: 153–165.

    Article  Google Scholar 

  • Parmesan, C., 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics 37: 637–669.

    Article  Google Scholar 

  • Parmesan, C. & G. Yohe, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.

    Article  CAS  PubMed  Google Scholar 

  • Persson, L., 1986. Temperature-induced shift in foraging ability in 2 fish species roach (Rutilus-rutilus) and perch (Perca-fluviatilis) – implications for coexistsence between poikliotherms. Journal of Animal Ecology 55: 829–839.

    Article  Google Scholar 

  • Petchey, O. L., 2000. Prey diversity, prey composition, and predator population dynamics in experimental microcosms. Journal of Animal Ecology 69: 874–882.

    Article  Google Scholar 

  • Petchey, O. L., P. T. McPhearson, T. M. Casey & P. J. Morin, 1999. Environmental warming alters food-web structure and ecosystem function. Nature 402: 69–72.

    Article  CAS  Google Scholar 

  • Petchey, O. L., A. P. Beckerman, J. O. Riede & P. H. Warren, 2008. Size, foraging, and food web structure. Proceedings of the National Academy of Sciences of the United States of America 105: 4191–4196.

    Article  CAS  PubMed  Google Scholar 

  • Peters, R. H., 1983. The Ecological Implications of Body Size. Cambridge University Press, Cambridge.

    Google Scholar 

  • Petersen, I., Z. Masters, A. G. Hildrew & S. J. Ormerod, 2004. Dispersal of adult aquatic insects in catchments of differing land use. Journal of Applied Ecology 41: 934–950.

    Article  Google Scholar 

  • Raffaelli, D., 2004. How extinction patterns affect ecosystems. Science 306: 1141–1142.

    Article  PubMed  Google Scholar 

  • Rahel, F. J. & J. D. Olden, 2008. Assessing the effects of climate change on aquatic invasive species. Conservation Biology 22: 521–533.

    Article  PubMed  Google Scholar 

  • Reich, P. B. & J. Oleksyn, 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America 101: 11001–11006.

    Article  CAS  PubMed  Google Scholar 

  • Reiss, J. & J. M. Schmid-Araya, 2008. Existing in plenty: abundance, biomass and diversity of ciliates and meiofauna in small streams. Freshwater Biology 53: 652–668.

    Article  Google Scholar 

  • Reiss, J., J. R. Bridle, J. M. Montoya & G. Woodward, 2009. Emerging horizons in biodiversity and ecosystem functioning research. Trends in Ecology and Evolution 24: 505–514.

    Article  PubMed  Google Scholar 

  • Ricciardi, A. & J. B. Rasmussen, 1999. Extinction rates of North American freshwater fauna. Conservation Biology 13(5): 1220–1222.

    Article  Google Scholar 

  • Riseng, C. M., M. J. Wiley & R. J. Stevenson, 2004. Hydrologic disturbance and nutrient effects on benthic community, structure in midwestern US streams: a covariance structure analysis. Journal of the North American Benthological Society 23(2): 309–326.

    Article  Google Scholar 

  • Rooney, N., K. McCann, G. Gellner & J. C. Moore, 2006. Structural asymmetry and the stability of diverse food webs. Nature 442: 265–269.

    Article  CAS  PubMed  Google Scholar 

  • Rothlisberger, J. D., M. A. Baker & P. C. Frost, 2008. Effects of periphyton stoichiometry on mayfly excretion rates and nutrient ratios. Journal of the North American Benthological Society 27: 497–508.

    Article  Google Scholar 

  • Rouse, W. R., M. S. V. Douglas, R. E. Hecky, A. E. Hershey, G. W. Kling, L. Lesack, P. Marsh, M. McDonald, B. J. Nicholson, N. T. Roulet & J. P. Smol, 1997. Effects of climate change on the freshwaters of arctic and subarctic North America. Hydrological Process 11: 873–902.

    Article  Google Scholar 

  • Rundle, S., A. L. Robertson & J. M. Schmid-Araya, 2002. Freshwater Meiofauna: Biology and Ecology. Blackhuys, Leiden.

    Google Scholar 

  • Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker & D. H. Wall, 2000. Biodiversity – Global biodiversity scenarios for the year 2100. Science 287: 1770–1774.

    Article  CAS  PubMed  Google Scholar 

  • Stelzer, R. S. & G. A. Lamberti, 2002. Ecological stoichiometry in running waters: periphyton chemical composition and snail growth. Ecology 83: 1039–1051.

    Article  Google Scholar 

  • Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Sweeney, B. W., J. K. Jackson, J. D. Newbold, & D. H. Funk, 1992. Climate change and the life histories and biogeography of aquatic insects in eastern North-America. In Firth, P. & S. G. Fisher (eds), Global Climate Change and Freshwater Ecosystems. Springer-Verlag, New York: 143–176.

    Google Scholar 

  • Thebault, E. & M. Loreau, 2003. Food-web constraints on biodiversity–ecosystem functioning relationships. Proceedings of the National Academy of Sciences of the United States of America 100(25): 14949–14954.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, M. F. de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. T. Peterson, O. L. Phillips & S. E. Williams, 2004. Extinction risk from climate change. Nature 427: 145–148.

    Article  CAS  PubMed  Google Scholar 

  • Tuchman, N. C., R. G. Wetzel, S. T. Rier, K. A. Wahtera & J. A. Teeri, 2002. Elevated atmospheric CO2 lowers leaf litter nutritional quality for stream ecosystem food webs. Global Change Biology 8: 163–170.

    Article  Google Scholar 

  • Tuchman, N. C., K. A. Wahtera, R. G. Wetzel, N. M. Russo, G. M. Kilbane, L. M. Sasso & J. A. Teeri, 2003. Nutritional quality of leaf detritus altered by elevated atmospheric CO2: effects on development of mosquito larvae. Freshwater Biology 48: 1432–1439.

    Article  Google Scholar 

  • Urabe, J., J. Togari & J. J. Elser, 2003. Stoichiometric impacts of increased carbon dioxide on a planktonic herbivore. Global Change Biology 9: 818–825.

    Article  Google Scholar 

  • Vannote, R. L. & B. W. Sweeney, 1980. Geographic analysis of thermal equiliberia – a conceptual–model for evaluating the effects of natural and modified thermal regimes on aquatic insect communities. American Naturalist 115: 667–695.

    Article  Google Scholar 

  • Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277: 102–104.

    Article  CAS  Google Scholar 

  • Wetzel, R., 2001. Limnology. Lake and River Ecosystems, 3rd ed. Academic Press, San Diego.

    Google Scholar 

  • Whited, D. C., M. S. Lorang, M. J. Harner, F. R. Hauer, J. S. Kimball & J. A. Stanford, 2007. Climate, hydrologic disturbance, and succession: drivers of floodplain pattern. Ecology 88: 940–953.

    Article  PubMed  Google Scholar 

  • Winder, M. & D. E. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.

    Article  Google Scholar 

  • Wipfli, M. S., J. P. Hudson, J. P. Caouette & D. T. Chaloner, 2003. Marine subsidies in freshwater ecosystems: salmon carcasses increase the growth rates of stream-resident salmonids. Transactions of the American Fisheries Society 132: 371–381.

    Article  Google Scholar 

  • Woodward, G., 2009. Biodiversity, ecosystem functioning and food webs in freshwaters: assembling the jigsaw puzzle. Freshwater Biology 54: 2171–2187.

    Article  Google Scholar 

  • Woodward, G. & A. G. Hildrew, 2002. Differential vulnerability of prey to an invading top predator: integrating field surveys and laboratory experiments. Ecological Entomology 27: 732–744.

    Article  Google Scholar 

  • Woodward, G. & P. Warren, 2007. Body size and predatory interactions in freshwaters: scaling from individuals to communities. In Hildrew, A. G., D. Raffaelli & R. Edmonds-Brown (eds), Body Size: The Structure and Function of Aquatic Ecosystems. Cambridge University Press, Cambridge: 179–197.

    Google Scholar 

  • Woodward, G., B. Ebenman, M. Ernmerson, J. M. Montoya, J. M. Olesen, A. Valido & P. H. Warren, 2005a. Body size in ecological networks. Trends in Ecology & Evolution 20: 402–409.

    Article  Google Scholar 

  • Woodward, G., D. C. Speirs & A. G. Hildrew, 2005b. Quantification and resolution of a complex, size-structured food web. Advances in Ecological Research 36: 85–135.

    Article  Google Scholar 

  • Woodward, G., G. Papantoniou, F. Edwards & R. B. Lauridsen, 2008. Trophic trickles and cascades in a complex food web: impacts of a keystone predator on stream community structure and ecosystem processes. Oikos 117(5): 683–692.

    Article  Google Scholar 

  • Woodward, G., J. B. Christensen, J. S. Olafsson, G. M. Gislason, E. R. Hannesdottir & N. Friberg, 2009. Sentinel systems on the razor’s edge: effects of warming on Arctic stream ecosystems. Global Change Biology. doi:10.1111/j.1365-2486.2009.02052.x.

    Google Scholar 

  • Woodward, G. D., M. Perkins & L. Brown, 2010. Climate change in freshwater ecosystems: impacts across multiple levels of organisation. Philosophical Transactions of the Royal Society of London Series B – Biological Sciences.

  • Wrona, F. J., T. D. Prowse, J. D. Reist, J. E. Hobbie, L. M. J. Levesque & W. F. Vincent, 2006. Climate change effects on aquatic biota, ecosystem structure and function. Ambio 35: 359–369.

    Article  CAS  PubMed  Google Scholar 

  • Yachi, S. & M. Loreau, 1999. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proceedings of the National Academy of Sciences of the United States of America 96: 1463–1468.

    Article  CAS  PubMed  Google Scholar 

  • Zwick, P., 1992. Stream habitat fragmentation – a threat to biodiversity. Biodiversity and Conservation 1: 80–97.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Natural Environment Research Council for financial support awarded to GW (grant reference: NE/D013305/1) which funded DMP and JR and to Dr Jose Montoya, Dr Mark Trimmer and GW (NER/S/A2006/14029), which funded GY-D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Woodward.

Additional information

Guest editors: R. J. Stevenson, S. Sabater / Global Change and River Ecosystems – Implications for Structure, Function and Ecosystem Services

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perkins, D.M., Reiss, J., Yvon-Durocher, G. et al. Global change and food webs in running waters. Hydrobiologia 657, 181–198 (2010). https://doi.org/10.1007/s10750-009-0080-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-0080-7

Keywords

Navigation