Hydrobiologia

, Volume 639, Issue 1, pp 261–269 | Cite as

Phytoplankton in the physical environment: beyond nutrients, at the end, there is some light

  • Tamar Zohary
  • Judit Padisák
  • Luigi Naselli-Flores
PHYTOPLANKTON

Abstract

This article summarizes the outcomes of the 15th Workshop of the International Association for Phytoplankton Taxonomy and Ecology. Four major issues dealing with the role of physical factors in phytoplankton ecology were addressed in the articles of this special volume: global change and its likely impacts on phytoplankton, the role of physical factors in the autecology of particular species, impacts on the inocula for the following years, and the role of light in shaping phytoplankton dynamics. Case studies from different types of aquatic environments (rivers, deep and shallow lakes, floodplain lakes, wetlands, oxbows, and even the deep ocean) and from diverse geographical locations (not only from the Mediterranean and temperate regions, but also from subtropical and tropical ones) have shown that physical forcing exerts a variety of selective pressures with impacts ranging from molding shape and size of organisms to modifying, through cascade effects, the structure of whole ecosystems.

Keywords

Global changes Physical factors Inocula Light Hydrology Temperature 

References

  1. Alster, A., R. N. Kaplan-Levy, A. Sukenik & T. Zohary, 2010. Morphology and phylogeny of a non-toxic invasive Cylindrospermopsis raciborskii from a Mediterranean Lake. Hydrobiologia. doi:10.1007/s10750-009-0044-y.Google Scholar
  2. Bai, N. J. & C. V. Seshadri, 1980. On coiling and uncoiling of trichomes in the genus Spirulina. Archiv für Hydrobiologie Supplement 60: 32–47.Google Scholar
  3. Barone, R., G. Castelli & L. Naselli-Flores, 2010. Red sky at night Cyanobacteria delight: The role of climate in structuring phytoplankton assemblage in a shallow, Mediterranean lake (Biviere di Gela, southeastern Sicily). Hydrobiologia. doi:10.1007/s10750-009-0016-2.
  4. Berman, T. & B. Shteinman, 1998. Phytoplankton development and turbulent mixing in Lake Kinneret. Journal of Plankton Research 20: 709–726.CrossRefGoogle Scholar
  5. Bouaicha, N. & A. B. Nasri, 2004. First report of cyanobacterium Cylindrospermopsis raciborskii from Algerian freshwaters. Environmental Toxicology 19: 541–543.CrossRefPubMedGoogle Scholar
  6. Cellamare, M., M. Leitão, M. Coste, A. Dutartre & J Haury, 2010. French Aquitane lakes… Tropical lakes? Hydrobiologia. doi:10.1007/s10750-009-0029-x.
  7. Centis, B., M. Tolotti & N. Salmaso, 2010. Structure of the diatom community of the River Adige (North-Eastern Italy) along a hydrological gradient. Hydrobiologia. doi:10.1007/s10750-009-0019-z.
  8. Charpin, M. F., N. Maurin, C. Amblard & J. Devaux, 1998. Seasonal variations of phytoplankton photosynthate partitioning in two lakes of different trophic level. Journal of Plankton Research 20: 901–921.CrossRefGoogle Scholar
  9. de Tezanos-Pinto, P. & E. Litchman, 2010. Eco-physiological responses of nitrogen-fixing cyanobacteria to light. Hydrobiologia. doi:10.1007/s10750-009-0014-4.
  10. Devercelli, M., 2010. Changes in phytoplankton morpho-functional groups induced by extreme hydroclimatic events in the Middle Paraná River (Argentina). Hydrobiologia. doi:10.1007/s10750-009-0020-6.
  11. Dokulil, M. T. & C. Kaiblinger, 2009. Phytoplankton productivity. In Likens, G. E. (ed.), Encyclopedia of Inland Waters, Vol. 1. Elsevier, Oxford: 210–218.CrossRefGoogle Scholar
  12. Dokulil, M. T. & K. Teubner, 2002. The spatial coherence of alpine lakes. Verh. Internat. Verein. Limnology 28: 1861–1864.Google Scholar
  13. Dokulil, M., K. Teubner, A. Jagsch, U. Nickus, R. Adrian, D. Straile, T. Jankowski, A. Herzig & J. Padisák, 2010. The impact of climate change on lakes in Central Europe. In George D. G. (ed.), The Impact of Climate Change on European Lakes. Series: Aquatic Ecology. Springer, Berlin.Google Scholar
  14. Druart, J. C. & J. F. Briand, 2002. First record of Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju (Cyanobacteria) in a lotic system in France. International Journal of Limnology 38: 339–342.CrossRefGoogle Scholar
  15. Dubinsky, Z. & O. Schofield, 2010. From the light to the darkness: Thriving at the light extremes in the oceans. Hydrobiologia. doi:10.1007/s10750-009-0026-0.
  16. Flaim, G., E. Rott, R. Frassanito, G. Guella & U. Obertegger, 2010. Eco-fingerprinting of the dinoflagellate Borghiella dodgei: experimental evidence of a specific environmental niche. Hydrobiologia. doi:10.1007/s10750-009-0013-5.
  17. George, D. G. & M. A. Hurley, 2004. The influence of sampling frequency on the detection of long-term change in three lakes in the English Lake District. Aquatic Ecosystem Health and Management 7: 1–14.CrossRefGoogle Scholar
  18. Harris, G. P. & G. Baxter, 1996. Interannual variability in phytoplankton biomass and species composition in a subtropical reservoir. Freshwater Biology 35: 545–560.CrossRefGoogle Scholar
  19. Hughes, L., 2000. Biological consequences of global warming: is the signal already apparent? Trends in Ecology & Evolution 15: 56–61.CrossRefGoogle Scholar
  20. Huszar, V. L. M. & C. S. Reynolds, 1997. Phytoplankton periodicity and sequences of dominance in an Amazonian floodplain lake (Lago Batata, Pará, Brazil): responses to gradual environmental change. Hydrobiologia 346: 169–181.CrossRefGoogle Scholar
  21. Jones, R. I., 1991. Advantages of diurnal vertical migrations to phytoplankton in sharply stratified, humic forest lakes. Archiv für Hydrobiologie 120: 257–266.Google Scholar
  22. Komárková, J., J. Jezberová, O. Komárek & E. Zapomělová, 2010. Variability of Chroococcus (Cyanobacteria) morphospecies with regards to phylogenetic relationships. Hydrobiologia. doi:10.1007/s10750-009-0015-3.
  23. Krasznai, E., G. Borics, G. Várbíró, A. Abonyi, J. Padisák, C. Deák & B. Tóthmérész, 2010. Characteristics of the pelagic phytoplankton in shallow oxbows. Hydrobiologia. doi:10.1007/s10750-009-0027-z.
  24. Krienitz, L. & E. Hegewald, 1996. Über das Vorkommen von wärmliebenden Blaualgenarten in einem norddeutschen See. Lauterbornia 26: 55–64.Google Scholar
  25. Kristiansen, J. (ed.), 1996. Biogeography of Freshwater Algae. Developments in Hydrobiology, Vol. 118. Kluwer Academic Publishers, Dordrecht: 161.Google Scholar
  26. Leech, D. M. & S. Johnsen, 2009. Light, biological receptors. In Likens, G. E. (ed.), Encyclopedia of Inland Waters, Vol. 2. Elsevier, Oxford: 671–681.CrossRefGoogle Scholar
  27. Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution, and Systematics 39: 615–639.CrossRefGoogle Scholar
  28. Mohamed, Z. A., 2007. First report of toxic Cylindrospermopsis raciborskii and Raphidiopsis mediterranea (Cyanoprokaryota) in Egyptian fresh waters. FEMS Microbial Ecology 59: 749–761.CrossRefGoogle Scholar
  29. Naselli-Flores, L., 2000. Phytoplankton assemblages in twenty-one sicilian reservoirs: relationship between species composition and environmental factors. Hydrobiologia 424: 1–11.CrossRefGoogle Scholar
  30. Naselli-Flores, L., 2003. Man-made lakes in Mediterranean semi-arid climate: the strange case of Dr Deep Lake and Mr Shallow Lake. Hydrobiologia 506(509): 13–21.CrossRefGoogle Scholar
  31. Naselli-Flores, L. & R. Barone, 2000. Phytoplankton dynamics and structure: a comparative analysis in natural and man-made water bodies of different trophic state. Hydrobiologia 438: 65–74.CrossRefGoogle Scholar
  32. Naselli-Flores, L. & R. Barone, 2005. Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 548: 85–99.CrossRefGoogle Scholar
  33. Naselli-Flores, L. & R. Barone, 2007. Pluriannual morphological variability of phytoplankton in a highly productive Mediterranean reservoir (Lake Arancio, Southwestern Sicily). Hydrobiologia 578: 87–95.CrossRefGoogle Scholar
  34. Naselli-Flores, L., J. Padisák & M. Albay, 2007. Shape and size in phytoplankton ecology: do they matter? Hydrobiologia 578: 157–161.CrossRefGoogle Scholar
  35. Nicklisch, A., 1998. Growth and light absorption of some planktonic cyanobacteria, diatoms and Chlorophyceae under simulated natural light fluctuations. Journal of Plankton Research 20: 105–119.CrossRefGoogle Scholar
  36. Nõges, P., O. Anneville, L. Arvola, T. Blenckner, D. G. George, T. Jankowski, M. Järvinen, S. C., Maberly, J. Padisák, D. Straile, K. Teubner & G. Weynenmeyer, 2010. The impact of changes in the weather and climate on the seasonal dynamics of phytoplankton. In George D. G. (ed.), The Impact of Climate Change on European Lakes. Series: Aquatic Ecology. Springer, Berlin.Google Scholar
  37. O.C.D.E, 1982. Eutrophisation des eaux. Méthodes de surveillance, d’évaluation et de lutte. OCDE, Paris: 164.Google Scholar
  38. Padisák, J., 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie/Supplement 107 (Monographic Studies): 563–593.Google Scholar
  39. Padisák, J., 2003. Phytoplankton. In O’Sullivan, P. E. & C. S. Reynolds (eds), The Lakes Handbook 1. Limnology and Limnetic Ecology. Blackwell Science Ltd., Oxford: 251–308.Google Scholar
  40. Padisák, J., 2009. The phycogeography of freshwater algae. In Likens G. E. (ed.), Encyclopedia of Inland Waters, Vol 1. Elsevier, Oxford: 219–223.Google Scholar
  41. Padisák, J., E. Hajnal, L. Naselli-Flores, M. T. Dokulil, P. Nõges & T. Zohary, 2010. Convergence and divergence in organization of phytoplankton communities under various regimes of physical and biological control. Hydrobiologia. doi:10.1007/s10750-009-0021-5.
  42. Parmesan, C., 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37: 637–669.CrossRefGoogle Scholar
  43. Phillips, K. A. & M. W. Fawley, 2002. Winter phytoplankton blooms under ice associated with elevated oxygen levels. Journal of Phycology 38: 1068–1073.CrossRefGoogle Scholar
  44. Rast, W. & J. A. Thornton, 2003. The phosphorus loading concept and the OECD eutrophication programme: origin, application and capabilities. In O’Sullivan, P. E. & C. S. Reynolds (eds), The Lakes Handbook 2. Lake Restoration and Rehabilitation. Blackwell Science Ltd., Oxford: 354–385.Google Scholar
  45. Reynolds, C. S., 1972. Growth, gas vacuolation and buoyancy in a natural population of a planktonic blue-green alga. Freshwater Biology 2: 87–106.CrossRefGoogle Scholar
  46. Reynolds, C. S., 1989. Physical determinants of phytoplankton succession. In Sommer, U. (ed.), Plankton Ecology: Succession in Plankton Communities. Springer Verlag, Berlin: 9–56.Google Scholar
  47. Reynolds, C. S., 1992. Eutrophication and the management of planktonic algae: what Vollenweider couldn’t tell us. In Sutcliffe, D. W. & J. G. Jones (eds), Eutrophication: Research and Application to Water Supply. Freshwater Biological Association, Ambleside: 4–29.Google Scholar
  48. Reynolds, C. S., 1997. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Ecology Institute, Oldendorf/Luhe: 371.Google Scholar
  49. Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge: 535.CrossRefGoogle Scholar
  50. Reynolds, C. S. & J.-P. Descy, 1996. The production, biomass and structure of phytoplankton in large rivers. Large Rivers 10. Archiv für Hydrobiologie Supplement 113: 161–187.Google Scholar
  51. Reynolds, C. S. & M. S. Glaister, 1993. Spatial and temporal changes on phytoplankton abundance on the upper and middle reachs of the river Severn. Large Rivers 9. Archiv für Hydrobiologie Supplement 101: 1–22.Google Scholar
  52. Saker, M. L., I. C. G. Nogueira, V. M. Vasconcelos, B. A. Neilan, G. K. Eaglesham & P. Pereira, 2003. First report and toxicological assessment of the cyanobacterium Cylindrospermopsis raciborskii from Portuguese freshwaters. Ecotoxicology and Environmental Safety 55: 243–250.CrossRefPubMedGoogle Scholar
  53. Salmaso, N. & A. Zignin, 2010. At the extreme of physical gradients: phytoplankton in highly flushed large rivers. Hydrobiologia. doi:10.1007/s10750-009-0018-0.
  54. Shafik, H. M., 2003. Morphological characteristics of Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju in laboratory cultures. Acta Biologica Hungarica 54: 121–136.CrossRefPubMedGoogle Scholar
  55. Stefaniak, K. & M. Kokocynski, 2005. Occurrence of invasive Cyanobacteria species in polimictic lakes of the Wielkopolska region (Western Poland). Oceanological and Hydrobiological Research 34(3): 137–148.Google Scholar
  56. Stoyneva, M. P., 2003. Steady-state phytoplankton assemblages in shallow Bulgarian wetlands. Hydrobiologia 502: 169–176.CrossRefGoogle Scholar
  57. Vasas, G., I. Bácsi, G. Surányi, M. Mikóné Hamvas, C. Máthé, S. A. Nagy & G. Borbély, 2010. Isolation of viable cell mass from frozen Microcystis viridis bloom containing microcystin-RR. Hydrobiologia. doi:10.1007/s10750-009-0025-1.
  58. Vollenweider, R. A. & J. Kerekes, 1980. The loading concept as basis for controlling eutrophication philosophy and preliminary results of the OECD programme on eutrophication. Progress in Water Technology 12: 5–38.Google Scholar
  59. Watson, S. B., T. Satchwill, E. Dixon & E. McCauley, 2001. Under-ice blooms and source-water odour in a nutrient-poor reservoir: biological, ecological and applied perspectives. Freshwater Biology 46: 1553–1567.CrossRefGoogle Scholar
  60. Weyhenmeyer, G. A., T. Blenckner & K. Pettersson, 1999. Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnology and Oceanography 44: 1788–1792.CrossRefGoogle Scholar
  61. Wyman, M. & P. Fay, 1987. Acclimation to the natural light climate. In Fay, P. & C. Van Baalen (eds), The Cyanobacteria. Elsevier Science Publishers B.V. (Biomedical Division), Amsterdam: 347–376.Google Scholar
  62. Yacobi, Y. Z. & T. Zohary, 2010. Carbon:chlorophyll a ratio, assimilation numbers and turnover times in Lake Kinneret phytoplankton. Hydrobiologia. doi:10.1007/s10750-009-0023-3.
  63. Zalocar de Domitrovic, Y., 1999. Estructura y dinámica del fitoplancton en la cuenca del eje potámico Paraguay-Paraná (Argentina). PhD thesis, Universidad Nacional de Córdoba, Córdoba.Google Scholar
  64. Zalocar de Domitrovic, Y., A. S. G. Poide-Neff & S. L. Casco, 2007. Abundance and diversity of phytoplankton in the Parana River (Argentina) 220 km downstream of the Yacyreta Reservoir. Brazilian Journal of Biology 67: 53–63.CrossRefGoogle Scholar
  65. Zapomělová, E., K. Řeháková, J. Jezberová & J. Komárková, 2010. Polyphasic characterization of eight planktonic Anabaena strains (Cyanobacteria) with reference to the variability of 61 Anabaena populations observed in the field. Hydrobiologia. doi:10.1007/s10750-009-0028-y.
  66. Zohary, T., J. Padisák & L. Naselli-Flores (eds), 2010. Phytoplankton in the physical environment. Hydrobiologia. doi:10.1007/s10750-009-0012-6.

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Tamar Zohary
    • 1
  • Judit Padisák
    • 2
  • Luigi Naselli-Flores
    • 3
  1. 1.Kinneret Limnological LaboratoryIsrael Oceanographic and Limnological Research LtdMigdalIsrael
  2. 2.Department of LimnologyUniversity of PannoniaVeszprémHungary
  3. 3.Department of Botanical SciencesUniversity of PalermoPalermoItaly

Personalised recommendations