, Volume 639, Issue 1, pp 99–113 | Cite as

Polyphasic characterization of eight planktonic Anabaena strains (Cyanobacteria) with reference to the variability of 61 Anabaena populations observed in the field

  • Eliška Zapomělová
  • Klára Řeháková
  • Jitka Jezberová
  • Jaroslava Komárková


The plasticity of morphological features used for single morphospecies identification was studied under varied experimental conditions (temperature, light, nitrogen, phosphorus) in eight planktonic Anabaena strains. The strains represented all of the morphospecies with coiled trichomes commonly occurring in Central Europe (two strains of A. mendotae & A. sigmoidea complex, two A. lemmermannii strains, two A. flos-aquae strains, and two strains of A. circinalis & A. crassa complex). Significant effects of the growth conditions on vegetative cell dimensions were observed in seven strains, and P concentration was the main influencing factor in most cases (six strains). Significant effect of an environmental factor (P) on akinete morphology was found in only one strain. Experimentally assessed temperature and light growth optima were specific for each strain and were not consistent with the taxonomic affiliation of the strains. Morphologies of the Anabaena strains studied were compared with the field morphologies of 61 Anabaena populations of eight morphospecies observed in the Czech Republic. The range of morphological variability of single strains under the experimental conditions spanned the total variability of the populations of relevant morphospecies observed in the field. Delimitations and proper descriptions of the morphospecies are discussed in the light of partial 16S rRNA gene sequences of the studied strains.


Anabaena Taxonomy Identification Morphological variability 16S rRNA gene 


  1. Anand, N., 1988. Culture studies and taxonomy of blue-green algae—certain identification problems. Archiv für Hydrobiologie Supplement 80: 141–147.Google Scholar
  2. Anonymous, 1996. Statistica for Windows [Computer Program Manual]. Statsoft, Tulsa, OK.Google Scholar
  3. Bai, N. J. & C. V. Seshadri, 1980. On coiling and uncoiling of trichomes in the genus Spirulina. Archiv für Hydrobiologie Supplement 60: 32–47.Google Scholar
  4. Booker, M. J. & A. E. Walsby, 1979. The relative form resistance of straight and helical blue-green algal filaments. British Phycological Journal 14: 141–150.CrossRefGoogle Scholar
  5. Chang, T. P., 1988. Morphological remarks on Pseudanabaena mucicola (Huber-Pestalozzi et Naumann) (Bourrelly) Chang. Algological Studies 50–53: 59–70.Google Scholar
  6. Cronberg, G. & J. Komárková, 1988. Anabaena farciminiformis, a new nostocacean blue-green alga from Scania, South Sweden. Archiv für Hydrobiologie Supplement 80: 277–282.Google Scholar
  7. Doers, M. P. & D. L. Parker, 1988. Properties of Microcystis aeruginosa and M. flos-aquae (cyanobacteria) in culture: taxonomic implications. Journal of Phycology 24: 502–508.Google Scholar
  8. Felsenstein, J., 2004. PHYLIP (Phylogeny Inference Package) Version 3.6—Computer Program, distributed by the author. Department of Genome Sciences, University of Washington, Seattle.Google Scholar
  9. Gugger, M., C. Lyra, P. Henriksen, A. Couté, J.-F. Humbert & K. Sivonen, 2002. Phylogenetic comparison of the cyanobacterial genera Anabaena and Aphanizomenon. International Journal of Systematic and Evolutionary Microbiology 52: 1–14.Google Scholar
  10. Guillard, R. R. & C. J. Lorenzen, 1972. Yellow-green algae with chlorophyllide c. Journal of Phycology 8: 10–14.Google Scholar
  11. Hickel, B., 1982. A helical, bloom forming Anabaena-like blue-green alga (Cyanophyta) from hypertrophic lakes. Archiv für Hydrobiologie 95: 115–124.Google Scholar
  12. Hill, H., 1976a. A new species of Anabaena (Cyanophyta, Nostocaceae) from a Minnesota lake II. Phycologia 15: 65–68.Google Scholar
  13. Hill, H., 1976b. A new species of Anabaena (Cyanophyta, Nostocaceae) from a Minnesota lake III. Phycologia 15: 69–71.Google Scholar
  14. Hill, H., 1976c. A new species of Anabaena (Cyanophyta, Nostocaceae) from a Minnesota lake I. Phycologia 15: 61–64.Google Scholar
  15. Hindák, F., 2000. Morphological variation of four planktic nostocalean cyanophytes – members of the genus Aphanizomenon or Anabaena? Hydrobiologia 438: 107–116.CrossRefGoogle Scholar
  16. Komárek, J., 1958. Die taxonomische Revision der planktischen Blaualgen der Tschechoslowakei. In Komárek, J. & H. Ettl (eds), Algologische Studien. Verlag der Tschechoslowakischen Akademie der Wissenschaften, Prag: 10–206.Google Scholar
  17. Komárek, J., 1996. Klíč k určování vodních květů sinic v České republice [A key for determination of water-bloom-forming cyanobacteria in the Czech Republic]. In Maršálek, B., V. Keršner & P. Marvan (eds), Vodní květy sinic [Cyanobacterial Water Blooms]. Nadatio flos-aquae, Brno: 22–85 (in Czech).Google Scholar
  18. Komárek, J. & K. Anagnostidis, 1989. Modern approach to the classification system of Cyanophytes, 4 – Nostocales. Archiv für Hydrobiologie Supplement 82: 247–345.Google Scholar
  19. Komárek, J. & E. Zapomělová, 2007. Planktic morphospecies of the cyanobacterial genus Anabaena = subg. Dolichospermum – 1. Part: coiled types. Fottea 7: 1–31.Google Scholar
  20. Komárková, J., 1988. Morphological variation in natural populations of Anabaena lemmermannii in respect to existence of Anabaena utermoehlii. Archiv für Hydrobiologie Supplement 80: 93–108.Google Scholar
  21. Komárková, J., R. Laudares-Silva & P. A. C. Senna, 1999. Extreme morphology of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) in the Lagoa do Petri, a freshwater coastal lagoon, Santa Catarina, Brazil. Algological Studies 94: 207–222.Google Scholar
  22. Komárková-Legnerová, J. & G. Cronberg, 1992. New and recombined filamentous Cyanophytes from lakes in South Scania, Sweden. Algological Studies 67: 21–31.Google Scholar
  23. Komárková-Legnerová, J. & P. Eloranta, 1992. Planktic blue-green algae (Cyanophyta) from Central Finland (Jyväskylä region) with special reference to the genus Anabaena. Algological Studies 67: 103–133.Google Scholar
  24. Kvíderová, J. & J. Lukavský, 2001. A new unit for crossed gradients of temperature and light. Nova Hedwigia (Beiheft: Algae and Extreme Environments) 123: 541–550.Google Scholar
  25. Li, R., M. Watanabe & M. M. Watanabe, 2000. Taxonomic studies of planktic species of Anabaena based on morphological characteristics in cultured strains. Hydrobiologia 438: 117–138.CrossRefGoogle Scholar
  26. Lorenzen, C. J., 1967. Determination of chlorophyll and phaeo-pigments: spectrophotometric equation. Limnology and Oceanography 12: 343–346.Google Scholar
  27. Lyra, C., S. Suomalainen, M. Gugger, C. Vezie, P. Sundman, L. Paulin & K. Sivonen, 2001. Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. International Journal of Systematic and Evolutionary Microbiology 51: 513–526.PubMedGoogle Scholar
  28. Nübel, U., F. Garcia-Pichel & G. Muyzer, 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology 63: 3327–3332.PubMedGoogle Scholar
  29. Padisák, J. & A. Kovács, 1997. Anabaena compacta (Nygaard) Hickel – Új kékalga faj a Balaton üledékélben és plankton jában. [Anabaena compacta (Nygaard) Hickel – a new blue-green algal spedies in the sediments and plankton of lake Balaton.] (in Hungarian with English summary). Hidrológiai Közlöny 77: 29–32.Google Scholar
  30. Palinska, K., W. Liesack, E. Rhiel & W. E. Krumbein, 1996. Phenotype variability of identical genotypes: the need for a combined approach in cyanobacterial taxonomy demonstrated on Merismopedia-like isolates. Archives of Microbiology 166: 224–233.CrossRefPubMedGoogle Scholar
  31. Rajaniemi, P., P. Hrouzek, K. Kaštovská, R. Willame, A. Rantala, L. Hoffmann, J. Komárek & K. Sivonen, 2005a. Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). International Journal of Systematic and Evolutionary Microbiology 55: 11–26.CrossRefPubMedGoogle Scholar
  32. Rajaniemi, P., J. Komárek, R. Willame, P. Hrouzek, K. Kaštovská, L. Hoffmann & K. Sivonen, 2005b. Taxonomic consequences from the combined molecular and phenotype evaluation of selected Anabaena and Aphanizomenon strains. Algological Studies 117: 371–391.CrossRefGoogle Scholar
  33. Rapala, J. & K. Sivonen, 1998. Assessment of environmental conditions that favor hepatotoxic and neurotoxic Anabaena spp. strains cultured under light limitation at different temperatures. Microbial Ecology 36: 181–192.CrossRefPubMedGoogle Scholar
  34. Robarts, R. D. & T. Zohary, 1987. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria. New Zealand Journal of Freshwater Research 21: 391–399.CrossRefGoogle Scholar
  35. Saitou, N. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425.PubMedGoogle Scholar
  36. Saker, M. L. & B. A. Neilan, 2001. Varied diazotrophies, morphologies, and toxicities of genetically similar isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from Northern Australia. Applied and Environmental Microbiology 67: 1839–1845.CrossRefPubMedGoogle Scholar
  37. Shafik, H. M., L. Vörös, P. Sprőber, M. Présing & A. W. Kovács, 2003. Some special morphological features of Cylindrospermopsis raciborskii in batch and continuous cultures. Hydrobiologia 506–509: 163–167.CrossRefGoogle Scholar
  38. Šmilauer, P., 1992. CANODRAW Users Guide v. 3.0. Microcomputer Power, Ithaca, NY.Google Scholar
  39. Stulp, B. K., 1982. Morphological variability of Anabaena strains (Cyanophyceae) under different culture conditions. Archiv für Hydrobiologie Supplement 63(Algological Studies 30): 165–176.Google Scholar
  40. Stulp, B. K. & W. T. Stam, 1982. General morphology and akinete germination of a number of Anabaena strains (Cyanophyceae). Archiv für Hydrobiologie Supplement 63(Algological Studies 30): 35–52.Google Scholar
  41. Stulp, B. K. & W. T. Stam, 1984a. Genotypic relationships between strains of Anabaena (Cyanophyceae) and their correlation with morphological affinities. British Phycological Journal 19: 287–301.CrossRefGoogle Scholar
  42. Stulp, B. K. & W. T. Stam, 1984b. Growth and morphology of Anabaena strains (Cyanophyceae, Cyanobacteria) in cultures under different salinities. British Phycological Journal 19: 281–286.CrossRefGoogle Scholar
  43. Stulp B. K. & W. T. Stam, 1985. Taxonomy of the genus Anabaena (Cyanophyceae) based on morphological and genotypic criteria. Archiv für Hydrobiologie Supplement 71 (Algological Studies, 38/39): 257–268.Google Scholar
  44. Taton, A., S. Grubisic, E. Brambilla, R. De Wit & A. Wilmotte, 2003. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo dry valleys, Antarctica): a morphological and molecular approach. Applied and Environmental Microbiology 69: 5157–5169.CrossRefPubMedGoogle Scholar
  45. Ter Braak, C. J. F. & P. Šmilauer, 1998. CANOCO Reference Manual. Microcomputer Power, Ithaca, NY.Google Scholar
  46. Willame, R., C. Boutte, S. Grubisic, A. Wilmotte, J. Komárek & L. Hoffmann, 2006. Morphological and molecular characterization of planktonic cyanobacteria from Belgium and Luxembourg. Journal of Phycology 42: 1312–1332.CrossRefGoogle Scholar
  47. Wilmotte, A., 1988. Growth and morphological variability of six strains of Phormidium cf. ectocarpi Gomont (Cyanophyceae) cultivated under different temperatures and light intensities. Algological Studies 50–53: 35–46.Google Scholar
  48. Wilmotte, A., G. Van der Auwera & R. De Wachter, 1993. Structure of the 16S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (‘Mastigocladus laminosus HTF’) strain PCC7518, and phylogenetic analysis. FEBS Microbiological Letters 317: 96–100.CrossRefGoogle Scholar
  49. Wilmotte, A., J. M. Neefs & R. De Wachter, 1994. Evolutionary affiliation of the marine nitrogen-fixing cyanobacterium Trichodesmium sp. strain NIBB 1067, derived by 16S ribosomal RNA sequence analysis. Microbiology 140: 2159–2164.CrossRefPubMedGoogle Scholar
  50. Wyman, M. & P. Fay, 1997. The Cyanobacteria. In Fay, P. & C. Van Baalen (eds), Acclimation to the natural light climate. Elsevier Science Publishers B.V. (Biomedical Division), Amsterdam: 347–376.Google Scholar
  51. Zapomělová, E., 2004. Morfologická variabilita a růst vybraných kmenů sinic rodu Anabaena a Aphanizomenon v závislosti na podmínkách prostředí [Morphological variability and growth of chosen cyanobacterial strains of genera Anabaena and Aphanizomenon in the dependence on environmental conditions]. MSc thesis, University of South Bohemia, Czech Republic (in Czech).Google Scholar
  52. Zapomělová, E., K. Řeháková, P. Znachor & J. Komárková, 2007. Morphological diversity of coiled planktonic types of the genus Anabaena (cyanobacteria) in natural populations – taxonomic consequences. Cryptogamie/Algologie 28: 353–371.Google Scholar
  53. Zapomělová, E., P. Hrouzek, K. Řeháková, M. Šabacká, M. Stibal, L. Caisová, J. Komárková & A. Lukešová, 2008a. Morphological variability in selected heterocystous cyanobacterial strains as a response to varied temperature, light intensity and medium composition. Folia Microbiologica 53: 333–341.CrossRefPubMedGoogle Scholar
  54. Zapomělová, E., D. Hisem, K. Řeháková, P. Hrouzek, J. Jezberová, J. Komárková, J. Korelusová & P. Znachor, 2008b. Experimental comparison of phenotypical plasticity and growth demands of two strains from the Anabaena circinalis/A. crassa complex (cyanobacteria). Journal of Plankton Research 30: 1257–1269.CrossRefGoogle Scholar
  55. Znachor, P., T. Jurczak, J. Komárková, J. Jezberová, J. Mankiewicz, K. Kaštovská & E. Zapomělová, 2006. Summer changes of cyanobacterial bloom composition and microcystin concentration in eutrophic Czech reservoirs. Environmental Toxicology 21: 236–243.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Eliška Zapomělová
    • 1
    • 2
  • Klára Řeháková
    • 1
    • 3
  • Jitka Jezberová
    • 1
  • Jaroslava Komárková
    • 1
    • 2
    • 3
  1. 1.Institute of HydrobiologyBiology Centre of AS CRCeske BudejoviceCzech Republic
  2. 2.Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
  3. 3.Institute of BotanyAS CRTrebonCzech Republic

Personalised recommendations