Skip to main content
Log in

Characteristics of the pelagic phytoplankton in shallow oxbows

  • PHYTOPLANKTON
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Numerous oxbows of different sizes, depths and ages accompany alluvial rivers in the Carpathian basin. These water bodies provide various habitats for macroscopic and microscopic assemblages. Phytoplankton of 13 oxbows in the Tisza valley was studied between 2005 and 2008. In this article, we focussed on the following questions (i) do the oxbows have unique microflora? (ii) does the macrophyte coverage have a large effect on the composition and biomass of the algal assemblages? and (iii) does the higher plants dominated state result in clear-water conditions in the oxbows? The studied oxbows were in different stages of the ageing process. We classified the sampled oxbows according to their macrophyte vegetation into five types. A total of 646 species of algae were recorded in the oxbows over the study period. The microflora was dominated by cyanophytes, chlorococcalean green algae, euglenophytes and diatom species. Phytoplankton species were allocated into 32 coda. For the determination of typical algal assemblages, we used Kohonen’s Self Organizing Map (SOM) statistical analysis combined with K-means clustering, which has resulted five different types of phytoplankton associations. These types were dominated by coda Y, L O , W1, W S and J. Chlorophyll a data of the sparsely and densely vegetated oxbows did not differ, since a wide range of values characterised both types of the lakes. In this study, the composition of the microflora is similar to that of other eutrophic lakes, but some rarely occurring taxa such as Peridinium gatunense Nygaard and Peridiniopsis elpatiewskyi (Ostenf.) Bourelly might play a key role in the phytoplankton succession of the oxbows. The effect of the macrophyte coverage was decisive in the composition of the algal assemblages, and our investigations indicated that, in the case of the oxbows, the macrophyte-dominated state does not necessarily result in a clear-water state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beccali, M., M. Cellura, V. Lo Brano & A. Marvuglia, 2004. Forecasting daily urban electric load profiles using artificial neural networks. Energy Conversion and Management 45: 2879–2900.

    Article  Google Scholar 

  • Borics, G., J. Padisák, I. Grigorszky, I. Oldal, S. L. Péterfi & L. Momeu, 1998. Green algal flora of the acidic bog-lake Baláta-tó SW Hungary. Biologia Bratislava 53: 457–465.

    Google Scholar 

  • Borics, G., I. Grigorszky, J. Padisák & S. Szabó, 2000. Phytoplankton associations in a small hypertrophic fishpond in East Hungary during a change from bottom-up to top-down control. Hydrobiologia 424: 79–90.

    Article  Google Scholar 

  • Borics, G., I. Grigorszky & J. Padisák, 2002. Tisza- és Körös-menti holtágak dinoflagellátái. [Dinoflagellates from the oxbows in the Tisza and Körös river valleys]. Hidrológiai Közlöny 82: 21–23. [In Hungarian with English summary].

    Google Scholar 

  • Borics, G., B. Tóthmérész, I. Grigorszky, J. Padisák, G. Várbíró & S. Szabó, 2003. Algal assemblage types of bog-lakes in Hungary and their relation to water chemistry, hydrological conditions and habitat diversity. Hydrobiologia 502: 145–155.

    Article  CAS  Google Scholar 

  • Gopal, B. & U. Goel, 1993. Competition and allelopathy in aquatic plant communities. Botanical Review 59: 155–210.

    Article  Google Scholar 

  • Grigorszky, I., S. Nagy, A. Tóth, Cs. Máthé, Z. Müller & Gy. Borbély, 1998a. Effect of large- and of small-bodied zooplankton on phytoplankton in an eutrophic oxbow. Journal of Plankton Research 20: 1989–1995.

    Article  Google Scholar 

  • Grigorszky, I., K. T. Kiss, F. Vasas & G. Vasas, 1998b. Data to knowledge of Hungarian Dinophyta species III. Contribution to the Dinophyta taxa of Körös area I. Tiscia 31: 99–106.

    Google Scholar 

  • Grigorszky, I., F. Vasas & G. Borics, 1999. A páncélos-ostoros algák (Dinophyta) kishatározója [A guide for the identification of Dinophyta taxa occurring in Hungary]. Vízi természet- és környezetvédelem 8, Budapest.

    Google Scholar 

  • Gross, E. M., 1999. Allelopathy in benthic and littoral areas: case studies on allelochemicals from benthic cyanobacteria and submersed macrophytes. In Inderjit, K. M., M. Dakshini & C. L. Foy (eds), Principles and practices in plant ecology: allelochemical interactions. CRC Press, LLC, Boca Raton: 179–199.

    Google Scholar 

  • Hajnal, É. & J. Padisák, 2008. Analysis of long-term ecological status of Lake Balaton based on the ALMOBAL phytoplankton database. Hydrobiologia 599: 227–237.

    Article  Google Scholar 

  • Hasler, A. D. & E. Jones, 1949. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecology 30: 346–359.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water-depth. Hydrobiologia 342(343): 151–164.

    Article  Google Scholar 

  • Kohonen, T., 2001. Self-organizing maps, Third ed. Springer, Berlin.

    Google Scholar 

  • Körner, S. & A. Nicklisch, 2002. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. Journal of Phycology 38: 862–871.

    Article  Google Scholar 

  • Krasznai, E., G. Fehér, G. Borics, G. Várbíró, I. Grigorszky & B. Tóthmérész, 2008. Use of desmids to assess the natural conservation value of a Hungarian oxbow (Malom-Tisza, NE-Hungary). Biologia 63: 924–931.

    Article  Google Scholar 

  • Lau, S. S. & S. N. Lane, 2002. Nutrient and grazing factors in relation to phytoplankton level in a eutrophic shallow lake: the effect of low macrophyte abundance. Water Research 36: 593–601.

    Article  Google Scholar 

  • Lek, S. & J. F. Guégan, 2000. Artificial neuronal networks: application to ecology and evolution. Springer, Berlin.

    Google Scholar 

  • MSZ 12750–17:1974: Felszíni vizek vizsgálata. Foszforformák meghatározása [Surface water. Determination of forms of phosphorus]. Magyar Szabványügyi Hivatal, Budapest. [in Hungarian with English summary].

  • MSZ 448–12:1982: Nitrát és nitrition meghatározása [Determination of nitrate and nitrite]. Magyar Szabványügyi Hivatal, Budapest. [in Hungarian with English summary].

  • MSZ ISO 7150–1:1992: Az ammónium meghatározása vízben. [Determination of ammonium]. Magyar Szabványügyi Hivatal, Budapest [in Hungarian with English summary].

  • Naselli-Flores, L., J. Padisák, M. T. Dokulil & I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502: 395–403.

    Article  Google Scholar 

  • Németh, J., 1997a. Az ostoros algák (Euglenophyta) kis-határozója 1. (javított és bővített kiadás). [A guide for the identification of Euglenophyta occurring in Hungary 1.]. Vízi természet- és környezetvédelem 3, Budapest.

    Google Scholar 

  • Németh, J., 1997b. Az ostoros algák (Euglenophyta) kishatározója 2. (javított és bővített kiadás). [A guide for the identification of Euglenophyta occurring in Hungary 2.]. Vízi természet- és környezetvédelem 4, Budapest.

    Google Scholar 

  • Németh, J., 2005. Red list of algae in Hungary. Acta Botanica Hungarica 47: 379–417.

    Article  Google Scholar 

  • Opticount, 2008. http://science.do-mix.de/software_opticount.php.

  • Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Zs. Zámbóné-Doma, 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.

    Article  Google Scholar 

  • Padisák, J., I. Grigorszky, G. Borics & É. Soróczki-Pintér, 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia 553: 1–14.

    Article  Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Pálfai, I., 2003. Oxbow-lakes in Hungary. Ministry of Environmental Control and Water Management, Budapest.

    Google Scholar 

  • Park, Y. S., R. Céréghino, A. Compin & S. Lek, 2003. Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecological Modelling 160: 265–280.

    Article  Google Scholar 

  • Park, Y. S., M. Gevrey, S. Lek & J. L. Giraudel, 2005. Evaluation of relevant species in communities: Development of structuring indices for the classification of communities using a self- organizing map. In Lek, S., M. Scardi, P. Verdonschot, J. P. Descy & Y. S. Park (eds), Modelling Community Structure in Freshwater Ecosystems. Springer, Berlin: 369–380.

    Chapter  Google Scholar 

  • Qin, B., Y. Song & G. Gao, 2006. The role of periphytes in the shift between macrophyte and phytoplankton dominated systems in a shallow, eutrophic lake (Lake Taihu, China). Science in China Series C: Life Sciences 49(6): 597–602.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Sas, H. (ed.), 1989. Lake restoration by reduction of nutrient loading: expectations, experiences, extrapolations. Academia Verlag Richarz, Gmbh.

    Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman and Hall, London.

    Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.

    Article  Google Scholar 

  • Schmidt, A. & G. Fehér, 1998. A zöldalgák Chlorococcales rendjének kishatározója 1. [A guide for the identification of Chlorococcales taxa occurring in Hungary 1.]. Vízi természet- és környezetvédelem 5, Budapest.

    Google Scholar 

  • Schmidt, A. & G. Fehér, 1999. A zöldalgák Chlorococcales rendjének kishatározója 2. [A guide for the identification of the Chlorococcales taxa occurring in Hungary 2.]. Vízi természet- és környezetvédelem 10, Budapest.

    Google Scholar 

  • Schmidt, A. & G. Fehér, 2001. A sárgászöld algák (Xanthophyceae) kishatározója. [A guide for the identification of Xanthophyceae (except Vaucheriales) taxa occurring in Hungary]. Vízi természet- és környezetvédelem 13, Budapest.

    Google Scholar 

  • Sommer, U., J. Padisák, C. S. Reynolds & P. Juhász-Nagy, 1993. Hutchinson’s heritage: the diversity–disturbance relationship in phytoplankton. Hyrdobiologia 249: 1–8.

    Article  Google Scholar 

  • Takamura, N., Y. Kadono, M. Fukushima, M. Nakagawa & B.-H. O. Kim, 2003. Effects of aquatic macrophytes on water quality and phytoplankton communities in shallow lakes. Ecological Research 18(4): 381–395.

    Article  CAS  Google Scholar 

  • Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton by zooplankton grazing, in the presence of zooplantivorous fish, in a shallow wetland ecosystem. Limnology & Oceanography 29: 472–486.

    Article  Google Scholar 

  • Tison, J., J.-L. Giraudel & M. Coste, 2008. Evaluating the ecological status of rivers using an index of ecological distance: An application to diatom communities. Ecological Indicators 8(3): 285–291.

    Article  Google Scholar 

  • Uherkovich, G., A. Schmidt & É. Ács, 1995. A Scenedesmus zöldalga nemzetség (Chlorococcales, Chlorophyceae) különös tekintettel magyarországi előfordulású taxonjaira. (The green algal genus Scenedesmus (Chlorococcales, Chlorophyceae) with special attention to taxa occurring in Hungary) – Magyar Algológiai Társaság, Budapest.

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton–Methodik. Mitteilungen. Internationale Vereiningung für theoretische und angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Van den Berg, M. S., H. Coops, M. L. Meijer, M. Scheffer & J. Simons, 1998. Clear water associated with a dense Chara vegetation in the shallow and turbid Lake Veluwemeer, the Netherlands. In Jeppesen, E., Ma. Sondergaard, Mo. Sondergaard & K. Kristoffersen (eds), Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag, New York: 339–352.

    Google Scholar 

  • Várbíró, G., É. Ács, G. Borics, K. Érces, G. Fehér, I. Grigorszky, T. Japport, G. Kocsis, E. Krasznai, K. Nagy, Zs. Nagy-Laszló, Zs. Pilinszky & K.T. Kiss, 2007. Use of Self-Organising Maps (SOM) for characterization of riverine phytoplankton associations in Hungary. Large rivers 17, No. 3–4, Archiv fur Hydrobiologie. Supplementband 161/3–4: 383–394.

  • Vesanto, J., 2000. Neural network tool for data mining: SOM Toolbox. Proceedings of Symposium on Tool Environments and Development Methods for Intelligent Systems (TOOL-MET2000) Oulu. Finland, 2000, pp. 184–196.

Download references

Acknowledgements

The study was supported by the Hungarian Ministry of Environment and Water, the Bolyai Foundation of the Hungarian Academy of Sciences and the Hungarian National Science Foundation (OTKA No. K 75552). This paper was presented as a contributed paper at the Bat Sheva de Rothschild seminar on Phytoplankton in the Physical Environment—the 15th workshop of the International Association of phytoplankton taxonomy and ecology (IAP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enikő Krasznai.

Additional information

Guest editors: T. Zohary, J. Padisák & L. Naselli-Flores / Phytoplankton in the Physical Environment: Papers from the 15th Workshop of the International Association for Phytoplankton Taxonomy and Ecology (IAP), held at the Ramot Holiday Resort on the Golan Heights, Israel, 23–30 November 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasznai, E., Borics, G., Várbíró, G. et al. Characteristics of the pelagic phytoplankton in shallow oxbows. Hydrobiologia 639, 173–184 (2010). https://doi.org/10.1007/s10750-009-0027-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-0027-z

Keywords

Navigation