Skip to main content
Log in

Isolation of viable cell mass from frozen Microcystis viridis bloom containing microcystin-RR

  • PHYTOPLANKTON
  • Short research note
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Cyanobacterial species commonly occur in the phytoplankton of freshwater lakes and sometimes develop as toxin-producing blooms. Microcystis is one of the most common genera of freshwater cyanobacteria and is often the dominating phytoplankton of eutrophic lakes all over the world. In eutrophic lakes, large amounts of Microcystis may overwinter in the sediment and re-inoculate the water column in spring. In most cases, the overwintering pelagic population—if it exists—is small, and its role in re-inoculation has not been clear yet. In December 2005, we found large amounts of Microcystis on the surface, frozen in the ice cover in a eutrophic pond (Pond Hármashegy, Hungary). We identified the Microcystis species and investigated the viability and the toxicity of the frozen cells. The dominant species in the bloom samples was Microcystis viridis. Viability tests showed that the colonies isolated from the ice cover were composed of living cells. The isolated strain was found toxic, we analyzed the microcystin composition in the frozen planktonic Microcystis mass; in the investigated samples microcystin-RR was the main cyanotoxin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Allen, M. M., 1968. Simple conditions for the growth of unicellular blue-green algae on plates. Journal of Phycology 4: 1–4.

    Article  CAS  Google Scholar 

  • Brittain, S., Z. A. Mohamed, J. Wang, V. K. B. Lehmann, W. W. Carmichael & K. L. Rinehart, 2000. Isolation and characterization of microcystins from a River Nile strain of Oscillatoria tenuis Agardh ex Gomont. Toxicon 38: 1759–1771.

    Article  CAS  PubMed  Google Scholar 

  • Carmichael, W. W., 1992. Cyanobacteria secondary metabolites—the cyanotoxins. Journal of Applied Bacteriology 72: 445–459.

    CAS  PubMed  Google Scholar 

  • Harada, K.-I., K. Matsuura, M. Suzuki, H. Oka, M. F. Watanabe, S. Oishi, A. M. Dahlem, V. R. Beasley & W. W. Charmichael, 1988. Analysis and purification of toxic peptides from cyanobacteria by reversed-phase high-performance liquid chromatography. Journal of Chromatography A 448: 275–283.

    Article  CAS  Google Scholar 

  • Komárek, J. & K. Anagnostidis, 1998. Cyanoprokaryota 1. Teil: Chroococcales. In Ettl, H., G. Gärtner, H. Heynig & D. Mollenhauer (eds), Süßwasserflora von Mitteleuropa. Gustav Fischer, Jena: 1–548.

    Google Scholar 

  • Kós, P., G. Gorzó, G. Surányi & G. Borbély, 1995. Simple and efficient method for isolation and measurement of cyanobacterial hepatotoxins by plant tests (Sinapis alba L.). Analytical Biochemistry 225: 49–53.

    Article  PubMed  Google Scholar 

  • Kurmayer, R. & T. Kutzenberger, 2003. Application of real-time PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp. Applied and Environmental Microbiology 69: 6723–6730.

    Article  CAS  PubMed  Google Scholar 

  • Kurmayer, R., E. Dittmann, J. Fastner & I. Chorus, 2002. Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Germany). Microbial Ecology 43: 107–118.

    Article  CAS  PubMed  Google Scholar 

  • Lawton, L. A., C. Edwards & G. A. Codd, 1994. Extraction and high performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst 119: 1525–1530.

    Article  CAS  PubMed  Google Scholar 

  • Long, B. M., G. J. Jones & P. T. Orr, 2001. Cellular microcystin content in N-limited Microcystis aeruginosa can be predicted from growth rate. Applied and Environmental Microbiology 67: 278–283.

    Article  CAS  PubMed  Google Scholar 

  • Lyra, C., S. Suomalainen, M. Gugger, C. Vezie, P. Sundman, L. Paulin & K. Sivonen, 2001. Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. International Journal of Systematic and Evolutionary Microbiology 51: 513–526.

    CAS  PubMed  Google Scholar 

  • Orr, P. T. & G. J. Jones, 1998. Relationship between microcystin production and cell division rates in nitrogen limited Microcystis aeruginosa cultures. Limnology and Oceanography 43: 1604–1614.

    CAS  Google Scholar 

  • Ouahid, Y., G. Perez-Silva & F. F. del Campo, 2005. Identification of potentially toxic environmental Microcystis by individual and multiple PCR amplification of specific microcystin synthetase gene regions. Environmental Toxicology 20: 235–242.

    Article  CAS  PubMed  Google Scholar 

  • Padisák, J., J. Kohler & S. Hoeg, 1999. The effect of changing flushing rates on development of late summer Aphanizomenon and Microcystis populations in a shallow lake, Muggelsee, Berlin, Germany. In Tundisi, J. G. & M. Straskraba (eds), Theoretical Reservoir Ecology and its Applications. Bakhuys Publ, Netherlands: 411–423.

    Google Scholar 

  • Preston, T., W. D. P. Stewart & C. S. Reynolds, 1980. Bloom-forming cyanobacterium Microcystis aeruginosa overwinters on sediment surface. Nature 288: 365–367.

    Article  Google Scholar 

  • Reynolds, C. S. & D. A. Rogers, 1976. Seasonal variation in vertical distribution and buoyancy of Microcystis aeruginosa Kutz Emend Elenkin in Rostherne-Mere, England. Hydrobiologia 48: 17–23.

    Google Scholar 

  • Reynolds, C. S., G. H. M. Jaworski, H. A. Cmiech & G. F. Leedale, 1981. On the annual cycle of the blue-green-alga Microcystis aeruginosa Kütz. emend Elenkin. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 293: 419–477.

    Article  Google Scholar 

  • Tillett, D., E. Dittmann, M. Erhard, H. von Döhren, T. Börner & B. A. Neilan, 2000. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-poliketide synthetase system. Chemistry and Biology 7: 753–764.

    Article  CAS  PubMed  Google Scholar 

  • Vasas, G., A. Gáspár, G. Surányi, G. Batta, G. Gyémánt, M.-M. Hamvas, C. Máthé, I. Grigorszky, E. Molnár & G. Borbély, 2002. Capillary electrophoretic assay and purification of cylindrospermopsin, a cyanobacterial toxin from Aphanizomenon ovalisporum, by plant test (blue-green Sinapis test). Analytical Biochemistry 302: 95–103.

    Article  CAS  PubMed  Google Scholar 

  • Vasas, G., A. Gáspár, C. Pager, G. Surányi, C. Máthé, M.-M. Hamvas & G. Borbély, 2004. Analysis of cyanobacterial toxins (anatoxin-a, cylindrospermopsin, microcystin-LR) by capillary electrophoresis. Electrophoresis 25: 108–115.

    Article  CAS  PubMed  Google Scholar 

  • Verspagen, J. M. H., E. O. F. M. Snelder, P. M. Visser, J. Huisman, L. R. Mur & B. W. Ibelings, 2004. Recruitment of benthic Microcystis (Cyanophyceae) to the water column: internal buoyancy changes or resuspension? Journal of Phycology 40: 260–270.

    Article  Google Scholar 

  • Verspagen, J. M. H., E. O. F. M. Snelder, P. M. Visser, K. D. Johnk, B. W. Ibelings, L. R. Mur & J. Huisman, 2005. Benthic-pelagic coupling in the population dynamics of the harmful cyanobacterium Microcystis. Freshwater Biology 50: 854–867.

    Article  Google Scholar 

  • Vieira, J. M. D., M. T. D. Azevedo, S. M. F. D. Azevedo, R. Y. Honda & B. Correa, 2003. Microcystin production by Radiocystis fernandoi (Chroococcales, Cyanobacteria) isolated from a drinking water reservoir in the city of Belem, PA,) Brazilian Amazonia region. Toxicon 42: 709–713.

    Article  CAS  Google Scholar 

  • Welker, M., L. Šejnohová, D. Némethová, H. von Döhren, J. Jarkovský & B. Maršálek, 2007. Seasonal shifts in chemotype composition of Microcystis sp. communities in the pelagial and the sediment of a shallow reservoir. Limnology and Oceanography 52: 609–619.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article was presented as a poster at the Bat Sheva de Rothschild seminar on Phytoplankton in the Physical Environment—the 15th workshop of the International Association of phytoplankton taxonomy and ecology (IAP). Taking part at the workshop was supported by the University of Debrecen, Department of Hydrobiology. The work has been supported by Hungarian National Research Foundation Grants OTKA F046493, GVOP-3.2.1.-2004-04-0110/3.0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Vasas.

Additional information

Guest editors: T. Zohary, J. Padisák & L. Naselli-Flores / Phytoplankton in the Physical Environment: Papers from the 15th Workshop of the International Association for Phytoplankton Taxonomy and Ecology (IAP), held at the Ramot Holiday Resort on the Golan Heights, Israel, 23–30 November 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasas, G., Bácsi, I., Surányi, G. et al. Isolation of viable cell mass from frozen Microcystis viridis bloom containing microcystin-RR. Hydrobiologia 639, 147–151 (2010). https://doi.org/10.1007/s10750-009-0025-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-0025-1

Keywords

Navigation