Skip to main content
Log in

Carbon:chlorophyll a ratio, assimilation numbers and turnover times of Lake Kinneret phytoplankton

  • PHYTOPLANKTON
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Carbon to chlorophyll a (C:Chl) ratios, assimilation numbers (A.N.) and turnover times of natural populations of individual species and taxonomic groups were extracted from a long-term database of phytoplankton wet-weight biomass, chlorophyll a concentrations, and primary production in Lake Kinneret, Israel. From a database spanning more than a decade, we selected data for samples dominated by a single species or taxonomic group. The overall average of C:Chl was highest for cyanophytes and lowest for diatoms, while chlorophytes and dinoflagellates showed intermediate values. When converting chlorophyll a to algal cellular carbon this variability should be taken into account. The variability in C:Chl within each phylum and species (when data were available) was high and the variability at any particular sampling date tended to be greater than the temporal variability. The average chlorophyll a-normalized rate of photosynthetic activity of cyanophytes was higher and that of the dinoflagellates lower than that of other phyla. Turnover time of phytoplankton, calculated using primary productivity data at the depth of maximal photosynthetic rate, was longest in dinoflagellates and shortest in cyanophytes, with diatoms and chlorophytes showing intermediate values. The more extreme C:Chl and turnover times of dinoflagellates and cyanobacteria in comparison with chlorophytes and diatoms should be taken into consideration when employed in ecological modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antia, N. J., C. D. McAllister, T. R. Paesons, K. Stephens & J. D. H. Strickland, 1963. Further measurements of primary production using a large-volume plastic sphere. Limnology and Oceanography 8: 166–183.

    Google Scholar 

  • APHA, 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Banse, K., 1977. Determining the carbon-to-chlorophyll ratio of natural phytoplankton. Marine Biology 41: 199–212.

    Article  CAS  Google Scholar 

  • Baumert, H. Z. & T. Petzoldt, 2008. The role of temperature, cellular quota and nutrient concentrations for photosynthesis, growth and light-dark acclimation in phytoplankton. Limnologica 38: 313–326.

    CAS  Google Scholar 

  • Behrenfeld, M. J., E. Maranon, D. A. Siegel & S. B. Hooker, 2002. A photoacclimation and nutrient based model of light-saturated photosynthesis for quantifying oceanic primary productivity. Marine Ecology Progress Series 228: 103–117.

    Article  CAS  Google Scholar 

  • Behrenfeld, M. J., E. Boss, D. A. Siegel & D. M. Shea, 2005. Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochemical Cycles 19: GB1006.

    Article  CAS  Google Scholar 

  • Bruce, L. C., D. Hamilton, J. Imberger, G. Gal, M. Gophen, T. Zohary & K. D. Hambright, 2006. A numerical simulation of the role of zooplankton in C, N and P cycling in Lake Kinneret, Israel. Ecological Modelling 193: 412–436.

    Article  Google Scholar 

  • Cloern, J. E., C. Grenz & L. Vidergar-Lucas, 1995. An empirical model of the phytoplankton chlorophyll: carbon ratio-the conversion factor between productivity and growth rate. Limnology and Oceanography 40: 1313–1321.

    Google Scholar 

  • de Marsac, N. T., 2003. Phycobiliproteins and phycobilisomes: the early observations. Photosynthesis Research 76: 193–202.

    Article  Google Scholar 

  • Eckert, W., J. Imberger & A. Saggio, 2002. Biogeochemical response to physical forcing in the water column of a warm monomictic lake. Biogeochemistry 61: 291–307.

    Article  CAS  Google Scholar 

  • Falkowski, P. G., 1983. Light-shade adaptation and vertical mixing of marine phytoplankton: a comparative field study. Journal of Marine Research 41: 215–237.

    Article  Google Scholar 

  • Falkowski, P. G. & T. G. Owens, 1980. Light-shade adaptation: two strategies in marine phytoplankton. Plant Physiology 61: 592–595.

    Article  Google Scholar 

  • Flynn, K. J., 2003. Do we need complex mechanistic photoacclimation models for phytoplankton? Limnology and Oceanography 48: 2243–2249.

    Article  CAS  Google Scholar 

  • Gal, G., M. Hipsey, A. Parparov, U. Wagner, V. Makler & T. Zohary, 2009. Implementation of ecological modeling as an effective management and investigation tool: Lake Kinneret as a case study. Ecological Modelling 290: 1697–1718.

    Article  CAS  Google Scholar 

  • Håkanson, L. & V. V. Boulion, 2002. The Lake Foodweb. Backhuys Publishers, Leiden, The Netherlands.

    Google Scholar 

  • Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Holm-Hansen, O., C. J. Lorenzen, R. W. Holmes & J. D. H. Strickland, 1965. Fluorometric determination of chlorophyll. Journal de Conseil International pour l’Exploration de la Mer 30: 3–15.

    CAS  Google Scholar 

  • Kirk, J. T. O., 1994. Light & Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Langdon, C., 1988. On the causes of interspecific differences in the growth-irradiance relationship for phytoplankton. II. A general review. Journal of Plankton Research 10: 1291–1312.

    Article  Google Scholar 

  • Lefèvre, N., A. H. Taylor, F. J. Gilbert & R. J. Geider, 2003. Modeling carbon to nitrogen and carbon to chlorophyll a ratios in the ocean at low latitudes: evaluation of the role of physiological plasticity. Limnology and Oceanography 48: 1807–1976.

    Article  Google Scholar 

  • Llewellyn, C. A., J. R. Fishwick & J. C. Blackford, 2005. Phytoplankton community assemblage in the English Channel: a comparison using chlorophyll a derived from HPLC-CHEMTAX and carbon derived from microscopy cell counts. Journal of Plankton Research 27: 103–119.

    Article  CAS  Google Scholar 

  • Menden-Deuer, S. & E. J. Lessard, 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45: 569–579.

    Article  CAS  Google Scholar 

  • Montagnes, D. J. S., J. A. Berges, P. J. Harrison & F. J. R. Taylor, 1994. Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnology and Oceanography 39: 1044–1059.

    Article  CAS  Google Scholar 

  • Pollingher, U., 1986. Phytoplankton periodicity in a subtropical lake (Lake Kinneret, Israel). Hydrobiologia 138: 127–138.

    Article  Google Scholar 

  • Pollingher, U., 1988. Freshwater armored dinoflagellates: growth, reproductive strategies and population dynamics. In Sandgren, C. (ed.), Growth and Reproduction Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 134–174.

    Google Scholar 

  • Pollingher, U. & T. Berman, 1982. Relative contributions of net and nanophytoplankton to primary production in Lake Kinneret (Israel). Archiv für Hydrobiologie 96: 33–46.

    Google Scholar 

  • Pollingher, U., O. Hadas, Y. Z. Yacobi, T. Zohary & T. Berman, 1998. Aphanizomenon ovalisporum (Forti) in Lake Kinneret (Israel). Journal of Plankton Research 20: 1321–1339.

    Article  Google Scholar 

  • Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Riemann, B., P. Simonsen & L. Stensgaard, 1989. The carbon and chlorophyll content of phytoplankton from various nutrient regimes. Journal of Plankton Research 11: 1037–1045.

    Article  Google Scholar 

  • Steemann-Neilsen, E., 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. Journal de Conseil International pour l’Exploration de la Mer 18: 117–140.

    Google Scholar 

  • Taylor, A. H., R. J. Geider & F. J. H. Gilbert, 1997. Seasonal and latitudinal dependencies of phytoplankton carbon-to-chlorophyll a ratios: results of a modelling study. Marine Ecology Progress Series 152: 51–66.

    Article  CAS  Google Scholar 

  • Usvyatsov, S. & T. Zohary, 2006. Lake Kinneret continuous time-depth chlorophyll record highlights major phytoplankton events. Verhandlungen der Internationale Vereinigung für Limnologie 29: 1131–1134.

    CAS  Google Scholar 

  • Utermöhl, H., 1958. Vervollkomnung der quantitativen Phytoplankton Methodik. Mitteilungen der Internationale Vereinigung für Limnologie 9: 1–38.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses, 3rd ed. Springer, New York.

    Google Scholar 

  • Wynne, D., N. J. Patni, S. Aaronson & T. Berman, 1982. The relationship between nutrient status and chemical composition of Peridinium cinctum during the bloom in Lake Kinneret. Journal of Plankton Research 4: 125–136.

    Article  CAS  Google Scholar 

  • Yacobi, Y. Z., 2003. Seasonal variation of photosynthetic pigments in the dinoflagellate Peridinium gatunense (Dinophyceae) in Lake Kinneret Israel. Freshwater Biology 48: 1850–1858.

    Article  CAS  Google Scholar 

  • Yacobi, Y. Z., 2006. Temporal and vertical variation of chlorophyll a concentration, phytoplankton photosynthetic activity and light attenuation in Lake Kinneret: possibilities and limitations for simulation by remote-sensing. Journal of Plankton Research 28: 725–736.

    Article  CAS  Google Scholar 

  • Yacobi, Y. Z. & U. Pollingher, 1993. Phytoplankton composition and activity: response to fluctuation in lake volume and turbulence. Verhandlungen der Internationale Vereinigung für Limnologie 25: 796–799.

    Google Scholar 

  • Zohary, T., 2004a. Changes to the phytoplankton assemblage of Lake Kinneret after decades of a predictable, repetitive pattern. Freshwater Biology 49: 1355–1371.

    Article  Google Scholar 

  • Zohary, T. (ed.), 2004b. Lake Kinneret water quality management and optimization support system – phase 2. IOLR report T8/2004: 75 pp.

  • Zonneveld, C., 1998. A cell-based model for the chlorophyll a to carbon ratio in phytoplankton. Ecological Modelling 113: 55–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This composition was presented as a contributed paper at the Bat Sheva de Rothschild seminar on Phytoplankton in the Physical Environment—the 15th workshop of the International Association of Phytoplankton Taxonomy and Ecology (IAP). The data used in this study are part of the Lake Kinneret Monitoring Program funded by the Israeli Water and Sewage Authority. We would like to thank two anonymous reviewers for providing a constructive criticism that helped improving the clarity and quality of the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosef Z. Yacobi.

Additional information

Guest editors: T. Zohary, J. Padisák & L. Naselli-Flores / Phytoplankton in the Physical Environment: Papers from the 15th Workshop of the International Association for Phytoplankton Taxonomy and Ecology (IAP), held at the Ramot Holiday Resort on the Golan Heights, Israel, 23–30 November 2008

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yacobi, Y.Z., Zohary, T. Carbon:chlorophyll a ratio, assimilation numbers and turnover times of Lake Kinneret phytoplankton. Hydrobiologia 639, 185–196 (2010). https://doi.org/10.1007/s10750-009-0023-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-0023-3

Keywords

Navigation