Skip to main content
Log in

Convergence and divergence in organization of phytoplankton communities under various regimes of physical and biological control

  • PHYTOPLANKTON
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The hypothesis that physical constraints may be as important, if not more important, than biological ones in shaping the structure of phytoplankton assemblage was tested by analyzing long-term (11–29 years) phytoplankton series in eight lakes and nine sites located along a latitudinal gradient in the Northern hemisphere. Phytoplankton biomass was used and similarity of assemblages in same months of the annual data sets was then calculated by subtracting the Bray–Curtis dissimilarity index from 1. The extent of biological and physical forcing was partly based on “expert evaluation”: the importance of four physical (light availability, temperature, conductivity, and sediment stirring up) and five biological variables (basic nutrients [SRP-, DIN-, SRSi-availability] as estimators of competition straight, importance of grazing, and importance of parasitism) was evaluated month by month by arbitrarily scaling from 1 to 5 the intensity of each variable and then summing them in the appropriate subgroup. Since the number of physical variables is less than that of the biological ones, the latter was rescaled to reach the same maximum attainable value of physical variables. The results showed an extremely high variability, making evident that each lake, although showing the same metabolic processes, behaves as an individual with regard to its phytoplankton structure. More generally, it was possible to highlight a largely more important role of physical constraints in shaping both biomass and composition of phytoplankton. This is especially true in winter. In addition, the results were compared to the outcomes of the PEG model, since a plasticity in the structure of phytoplankton much greater than that reported in this widely acknowledged model has been recorded in the data set used. This high variability found in this study in relation to physical constraints might also explain the different patterns of phytoplankton growth observed from Northern temperate to Mediterranean lakes as well as those occurring in shallow and deep lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agasild, H., P. Zingel, I. Tõnno, J. Haberman & T. Nõges, 2007. Contribution of different zooplankton groups in grazing on phytoplankton in shallow eutrophic Lake Võrtsjärv (Estonia). Hydrobiologia 584: 167–177.

    Article  Google Scholar 

  • Alvarez-Cobelas, M., C. Rojo & D. Angeler, 2005. Mediterranean limnology: current status, gaps and the future. Journal of Limnology 64: 13–29.

    Google Scholar 

  • Barone, R. & L. Naselli-Flores, 1994. Phytoplankton dynamics in a shallow, hypertrophic reservoir (Lake Arancio, Sicily). Hydrobiologia 289: 199–214.

    Article  CAS  Google Scholar 

  • Becker, V., V. L. M. Huszar, L. Naselli-Flores & J. Padisák, 2008. Phytoplankton equilibrium phases during thermal stratification in a deep subtropical water supply reservoir. Freshwater Biology 53: 952–963.

    Article  Google Scholar 

  • Casper, S. J., 1985. The phytoplankton. In Casper, S. J. (ed.), Lake Stechlin. A Temperate Oligotrophic Lake. Dr. W. Junk Publishers, Dordrecht, Boston, Lancaster: 157–195.

    Google Scholar 

  • Clements, F. E., 1916. Plant Succession: An Analysis of the Development of Vegetation. Carnegie Institute of Washington Publication 242, Washington, USA.

    Google Scholar 

  • Dittrich, M. & R. Koschel, 2002. Interactions between calcite precipitation (natural and artificial) and phosphorus cycle in the hardwater lake. Hydrobiologia 469: 49–57.

    Article  CAS  Google Scholar 

  • Dokulil, M., 1987. Long term occurrence of blue-green algae in Mondsee during eutrophication and after nutrient reduction with special reference to Oscillatoria rubescens. Schweizerische Zeitschrift für Hydrologie 49: 378.

    Google Scholar 

  • Dokulil, M., 1991. Populationsdynamik der Phytoplankton-Diatomeen im Mondsee seit 1957. Wasser und Abwasser 35: 53–75.

    Google Scholar 

  • Dokulil, M. T. & J. Mayer, 1996. Population dynamics and photosynthetic rates of a Cylindrospermopsis—Limnothrix association in a highly eutrophic urban lake, Alte Donau, Vienna, Austria. Algological Studies 83: 179–195.

    Google Scholar 

  • Dokulil, M. & C. Skolaut, 1986. Succession of phytoplankton in a deep stratifying lake: Mondsee, Austria. Hydrobiologia 138: 9–24.

    Article  Google Scholar 

  • Dokulil, M. T. & K. Teubner, 2002. The spatial coherence of alpine lakes. Verhandlungen der internationale Vereinigung für theoretische und angewandte Limnologie 28: 1861–1864.

    CAS  Google Scholar 

  • Dokulil, M. T. & K. Teubner, 2003a. Steady state phytoplankton assemblages during thermal stratification in deep alpine lakes. Do they occur? Hydrobiologia 502: 65–72.

    Article  Google Scholar 

  • Dokulil, M. T. & K. Teubner, 2003b. Eutrophication and restoration of shallow lakes—the concept of stable equilibria revisited. Hydrobiologia 506(509): 29–35.

    Article  Google Scholar 

  • Dokulil, M. T. & K. Teubner, 2005. Do phytoplankton assemblages correctly track trophic changes?—Assessment from contemporary and palaeolimnological data. Freshwater Biology 50: 1594–1604.

    Article  CAS  Google Scholar 

  • Dokulil, M., K. Teubner, A. Jagsch, U. Nickus, R. Adrian, D. Straile, T. Jankowski, A. Herzig & J. Padisák, 2009. The impact of climate change on lakes in Central Europe. In D. G. George (ed.), The Impact of Climate Change on European Lakes. Aquatic Ecology Series 4: 387–409, Springer, The Netherlands.

  • Gleason, H., 1917. The structure and development of plant association. Bulletin of the Torrey Botanical Club 44: 463–481.

    Article  Google Scholar 

  • Gleason, H., 1926. Further views on the succession concept. Ecology 8: 299–326.

    Article  Google Scholar 

  • Hajnal, É. & J. Padisák, 2008. Analysis of long-term ecological status of Lake Balaton based on the ALMOBAL phytoplankton database. Hydrobiologia 599: 227–237.

    Article  Google Scholar 

  • Hambright, K. D. & R. Hershcovitch, 1998. Kinneret Limnological Laboratory Bibliography, 1968–1998. Israel Oceanographic and Limnological Research, Haifa.

    Google Scholar 

  • Honti, M., V. Istvanovics & A. Osztoics, 2007. Stability and change of phytoplankton communities in a highly dynamic environment—the case of large shallow Lake Balaton (Hungary). Hydrobiologia 581: 225–240.

    Article  CAS  Google Scholar 

  • Istvánovics, V., A. Clement, L. Somlyódy, A. Specziár, L. G. Tóth & J. Padisák, 2007. Updating water quality targets for shallow Lake Balaton (Hungary), recovering from eutrophication. Hydrobiologia 581: 305–318.

    Article  CAS  Google Scholar 

  • Koschel, R. & D. D. Adam, 2003. Preface: an approach to understanding a temperate oligotrophic lowland lake (Lake Stechlin, Germany). Archiv für Hydrobiologie/Advances in Limnology 58: 1–9.

    Google Scholar 

  • Löffler, H. (ed.), 1988. Alte Donau. Projektstudie im Auftrag der Wasserstraßendirektion. Eigenverlag, Vienna.

    Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Naselli-Flores, L., 2003. Man-made lakes in Mediterranean semi-arid climate: the strange case of Dr Deep Lake and Mr Shallow Lake. Hydrobiologia 506(509): 13–21.

    Article  Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2003. Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis ecomorphological variability in maintaining an apparent equilibrium. Hydrobiologia 502: 133–143.

    Article  Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2005. Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia 548: 85–99.

    Article  Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2007. Pluriannual morphological variability of phytoplankton in a highly productive Mediterranean reservoir (Lake Arancio, Southwestern Sicily). Hydrobiologia 578: 87–95.

    Article  Google Scholar 

  • Naselli-Flores, L., J. Padisák, M. T. Dokulil & I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502: 395–403.

    Article  Google Scholar 

  • Naselli-Flores, L., J. Padisák & M. Albay, 2007. Shape and size in phytoplankton ecology: do they matter? Hydrobiologia 578: 157–161.

    Article  Google Scholar 

  • Nõges, P., R. Adrian, O. Anneville, L. Arvola, T. Blenckner, D. G. George, T. Jankowski, M. Järvinen, S. C. Maberly, J. Padisák, D. Straile, K. Teubner & G. Weynenmeyer, 2009. The impact of variations in the climate on seasonal dynamics of phytoplankton. In George D. G. (ed.), The Impact of Climate Change on European Lakes. Aquatic Ecology Series 4: 253–274, Springer, The Netherlands. doi:10.1007/978-90-481-2945-4_14

  • Nõges, T. & P. Nõges, 1999. The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia 409: 277–283.

    Article  Google Scholar 

  • Nõges, P. & T. Nõges, 2006. Indicators and criteria to assess ecological status of the large shallow temperate polymictic lakes Peipsi (Estonia/Russia) and Võrtsjärv (Estonia). Boreal Environment Research 11: 67–80.

    Google Scholar 

  • Nõges, P., M. Kägu & T. Nõges, 2007. Role of climate and agricultural practice in determining the matter discharge into large shallow Lake Võrtsjärv, Estonia. Hydrobiologia 581: 125–134.

    Article  CAS  Google Scholar 

  • Nõges, T., R. Laugaste, P. Nõges & I. Tõnno, 2008. Critical N:P ratio for cyanobacteria and N2-fixing species in the large shallow temperate lakes Peipsi and Võrtsjärv, North-East Europe. Hydrobiologia 599: 77–86.

    Article  CAS  Google Scholar 

  • Padisák, J., 2003. Phytoplankton. In O’Sullivan, P. E. & C. S. Reynolds (eds), The Lakes Handbook 1. Limnology and Limnetic Ecology. Blackwell Science Ltd., Oxford: 251–308.

    Google Scholar 

  • Padisák, J. & M. Dokulil, 1994. Meroplankton dynamics in a saline, turbulent, turbid shallow lake (Neusiedlersee, Austria and Hungary). Hydrobiologia 289: 23–42.

    Article  Google Scholar 

  • Padisák, J. & C. S. Reynolds, 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to cyanoprokaryotes. Hydrobiologia 384: 41–53.

    Article  Google Scholar 

  • Padisák, J., C. S. Reynolds & U. Sommer (eds), 1993. Intermediate Disturbance Hypothesis in Phytoplankton Ecology. Developments in Hydrobiology 81. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Padisák, J., F. A. R. Barbosa, R. Koschel & L. Krienitz, 2003a. Deep layer cyanoprokaryota maxima are constitutional features of lakes: examples from temperate and tropical regions. Archiv für Hydrobiologie/Advances in Limnology 58: 175–199.

    Google Scholar 

  • Padisák, J., W. Scheffler, P. Kasprzak, R. Koschel & L. Krienitz, 2003b. Interannual changes (1994–2000) of phytoplankton of Lake Stechlin. Archiv für Hydrobiologie/Advances in Limnology 58: 101–133.

    Google Scholar 

  • Padisák, J., W. Scheffler, C. Sípos, P. Kasprzak, R. Koschel & L. Krienitz, 2003c. Spatial and temporal pattern of development and decline of the spring diatom populations in Lake Stechlin in 1999. Archiv für Hydrobiologie/Advances in Limnology 58: 135–155.

    Google Scholar 

  • Padisák, J., W. Scheffler, R. Koschel & L. Krienitz, 2004. Seasonal patterns and interannual variability of phytoplankton in Lake Stechlin. Annual Report 2003 of the Leibnitz-Institut of Freshwater Ecology and Inland Fisheries, Berlin, ISSN 1432-508X: 105–116.

  • Padisák, J., I. Grigorszky, G. Borics & É. Soróczki-Pintér, 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia 553: 1–14.

    Article  Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009a. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Padisák, J., É. Hajnal, R. Koschel & L. Krienitz, 2009b. The importance of winter phytoplankton composition in contrasting lakes: a deep stratifying and a shallow polymictic. Verhandlungen der internationale Vereinigung für theoretische und angewandte Limnologie 30: 757–760.

    Google Scholar 

  • Podani, J., 1988. Syn-Tax III. User’s manual. Abstracta Botanica 12: 1–183.

    Google Scholar 

  • Pollingher, U., 1986. Phytoplankton periodicity in a subtropical lake (Lake Kinneret, Israel). Hydrobiologia 138: 127–138.

    Article  Google Scholar 

  • Raven, J. A. & S. C. Maberly, 2009. Phytoplankton nutrition and related mixotrophy. In Lickens, G. E. (ed.), Encyclopedia of Inland Waters. Elsevier, Amsterdam.

    Google Scholar 

  • Reynolds, C. S., 1972. Growth, gas vacuolation and buoyancy in a natural population of a planktonic blue-green alga. Freshwater Biology 2: 87–106.

    Article  Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambrige University Press, Cambridge.

    Google Scholar 

  • Reynolds, C. S., 1988. Functional morphology and the adaptive strategies of freshwater phytoplankton. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambrige University Press, Cambrigde: 338–433.

    Google Scholar 

  • Reynolds, C. S., 1994. The long, the short and the stalled: on the attributes of phytoplankton selected by physical mixing in lakes and rivers. Hydrobiologia 289: 9–21.

    Article  Google Scholar 

  • Reynolds, C. S. R., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Salmaso, N. & J. Padisák, 2007. Morpho-Functional Groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.

    Article  Google Scholar 

  • Scheffler, W. & J. Padisák, 2000. Stephanocostis chantaicus (Bacillariophyceae): morphology and population dynamics of a rare centric diatom growing in winter under ice in the oligotrophic Lake Stechlin, Germany. Archiv für Hydrobiologie/Algological Studies 133: 49–69.

    CAS  Google Scholar 

  • Serruya, C. (ed.), 1978. Lake Kinneret. Dr. Junk Publishers, The Hague.

    Google Scholar 

  • Sommer, U., 1985. Comparisons between steady state and not-steady state competitions: experiments with natural phytoplankton. Limnology and Oceanography 30: 335–346.

    Article  CAS  Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in freshwaters. Archiv für Hydrobiologie 106: 433–471.

    Google Scholar 

  • Watt, A. S., 1947. Pattern and process in the plant community. Journal of Ecology 35: 1–22.

    Article  Google Scholar 

  • Zohary, T., 2004. Changes to the phytoplankton assemblage of Lake Kinneret after decades of a predictable, repetitive pattern. Freshwater Biology 49: 1355–1371.

    Article  Google Scholar 

Download references

Acknowledgments

Data analyses were supported by the Hungarian National Science Foundation (OTKA Nr. K 75552). Phytoplankton studies on Lake Stechlin were supported by the Leibniz-Institute for Aquatic Ecology and Inland Fishery (Berlin/Stechlin-Neuglobsow, Germany). The long-term record of phytoplankton in Lake Kinneret was conducted by Tatiana Fishbein and funded by the Israel Water Authority. Analysis of long-term recording of phytoplankton in Lake Arancio was possible thanks to a grant from the University of Palermo (11108/2007), in Võrtsjärv supported by SF0170011508 from EME and in Neusiedlersee by the Biologische Station Illmitz. This study was presented as a contributed paper at the Bat Sheva de Rothschild seminar on Phytoplankton in the Physical Environment – The 15th Workshop of the International Association of Phytoplankton Taxonomy and Ecology (IAP) – held in Ramot, Israel, November 23–30, 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judit Padisák.

Additional information

Guest editors: T. Zohary, J. Padisák & L. Naselli-Flores / Phytoplankton in the Physical Environment: Papers from the 15th Workshop of the International Association for Phytoplankton Taxonomy and Ecology (IAP), held at the Ramot Holiday Resort on the Golan Heights, Israel, 23–30 November 2008

Electronic supplementary material

Below are the link to the electronic supplementary material.

Supplementary material 1 (PDF 169 kb)

Supplementary material 2 (PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padisák, J., Hajnal, É., Naselli-Flores, L. et al. Convergence and divergence in organization of phytoplankton communities under various regimes of physical and biological control. Hydrobiologia 639, 205–220 (2010). https://doi.org/10.1007/s10750-009-0021-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-0021-5

Keywords

Navigation