Skip to main content

Application of remote sensing to site characterisation and environmental change analysis of North African coastal lagoons

Abstract

This article describes the use of satellite imagery for identifying key environmental characteristics within three North African coastal lagoons (Merja Zerga, Morocco; Ghar El Melh, Tunisia and Lake Manzala, Egypt) and for detecting the major environmental changes within these environments. A combination of Landsat MSS, Landsat TM, Landsat ETM+ and ASTER imagery was acquired for the three sites for a period covering the last three decades (1972–2004). Following geometric correction and enhancement, the interpretation of the most recent image acquired for each of the three lagoons provides important insights into their current conditions. For Merja Zerga, these include the distribution of the largest channels which drain extensive inter-tidal mudflats and the two major depositional features associated with sources of freshwater. The distribution of marginal aquatic vegetation is highlighted as is the intensive use of the surrounding landscape for agriculture. Intensive agriculture around Ghar El Melh is also indicated. The influence of the Mejerda River, which was diverted away from the lagoon over 100 years ago, is shown to persist as a residual area of deltaic deposits in shallow water that has been eroded over time. Coastal processes including the direction of the alongshore sediment transport and the influence of engineering work associated with port construction can also be recognised. Within Lake Manzala, vegetated islands divide the lake into a series of sub-basins which can be clearly distinguished. The large influence of human activities within this lake can be identified and include reclamation for agriculture and the conversion of parts of the lake bed for fish farms. The historical images available for the three lagoons provide important insights into decadal scale changes, which have been greatest at Lake Manzala. Since the early 1970s large parts of the lake, in particular in the southwest where the shoreline has migrated northwards, have been reclaimed. Major engineering works, such as the El Salam Canal and road embankments, are shown to have resulted in significant lake change. The distribution of emergent vegetation within the lake has also changed. Classification of images for this lake into open water, vegetation and land enables the quantification of these changes. Between 1973 and 2003, the lake declined in area by approximately 50%. Changes at Merja Zerga over the last three decades include reconfiguration of the marine outlet and the expansion of the internal delta at the end of the Nador Canal. The images of this site clearly demonstrate the intensification of agriculture around the lagoon. The most marked changes evident within the images of Ghar El Melh concern the sand bars that separate the lagoon from the sea. Geomorphological processes operating within the coastal zone have resulted in the straightening of the bars with central sections migrating out towards the sea. Remote sensing is established as a promising application for detecting the quantitative surface cover changes in coastal lagoons and their near landscapes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Abdeen, M. M., A. K. Thurmond, M. G. Abdelsalam & R. J. Stern, 2002. Use of TERRA ASTER band ratio images for geological mapping in arid regions: the Neoproterozoic Allaqi Sature, Egypt. Egyptian Journal of Remote Sensing and Space Science 5: 19–40.

    Google Scholar 

  • Abdel-Kader, A., 1982. Landsat Analysis of the Nile Delta, Egypt. MSc Thesis. University of Delaware, Newark.

  • Ahmed, M. H. & B. El-Leithy, 2008. Utilization of satellite images for monitoring the environmental changes and development in Lake Mariout during the past four decades. Proceedings of the International Conference “Environment is a Must”, 10–12 June 2008, Alexandria.

  • Ahmed, M. H. & N. S. Donia, 2007. Spatial investigation of water quality of Lake Manzala using GIS techniques. Egyptian Journal of Remote Sensing and Space Sciences 10: 63–86.

    Google Scholar 

  • Albright, T. P., T. G. Moorhouse & T. J. McNabb, 2004. The rise and fall of water hyacinth in Lake Victoria and the Kagera River Basin, 1989–2001. Journal of Aquatic Plant Management 42: 73–84.

    Google Scholar 

  • Ambrose, J. & P. Shah, 1990. The Importance of Remote Sensing and Mapping for Resource Management: A Case Study of Nepal. Integrated Surveys Section, Tomkcal Surveys Branch, Government of Nepal: 2161–2164.

  • Ayache, F., J. R. Thompson, R. J. Flower, A. Boujarra, F. Rouatbi & H. Makina, 2009. Environmental characteristics, landscape history and pressures on three coastal lagoons in the Southern Mediterranean Region: Merja Zerga (Morocco), Ghar El Melh (Tunisia) and Lake Manzala (Egypt). Hydrobiologia. doi:10.1007/s10750-008-9676-6.

  • Calvo, S., G. Ciraolo & G. L. Loggia, 2003. Monitoring Posidonia oceanica meadows in a Mediterranean coastal lagoon (Stagnone, Italy) by means of neural network and ISODATA classification methods. International Journal of Remote Sensing 24: 2703–2716.

    Article  Google Scholar 

  • Christensen, E., J. Jensen, E. Ramsey & H. Mackey, 1988. Aircraft MSS data registration and vegetation classification for wetland change detection. International Journal of Remote Sensing 9: 23–38.

    Article  Google Scholar 

  • Cózar, A., C. M. García, J. A. Gálvez, S. A. Loiselle, L. Bracchini & A. Cognetta, 2005. Remote sensing imagery analysis of the lacustrine system of Ibera wetland (Argentina). Ecological Modelling 186: 29–41.

    Article  Google Scholar 

  • Curran, P. J., 1985. Principles of Remote Sensing. Longman, London.

    Google Scholar 

  • De Roeck, E. R., N. E. C. Verhoest, M. H. Miya, H. Lievens, O. Batelaan, A. Thomas & L. Brendonck, 2008. Remote sensing and wetland ecology: a South African case study. Sensors 8: 3542–3556.

    Article  Google Scholar 

  • Duning, L., H. Xinghen & Y. W. Xianli, 1996. Protection of littoral wetlands in North China, ecological and environmental characteristics. Ambio 25: 2–5.

    Google Scholar 

  • El-Quosy, D. E., 2006. Lake Manzala engineered wetland. Paper presented at the First International Conference: Environmental Change in Lakes, Lagoons and Wetlands of the Southern Mediterranean Region, 4–7 January 2006, Cairo.

  • ERDAS, 1999. Earth Resources Data Analysis System, ERDAS Field Guide, 4th ed. ERDAS Inc., Atlanta.

    Google Scholar 

  • FAO, 2005. Country Profile: Egypt. Food and Agriculture Programme of the United Nations, Rome.

    Google Scholar 

  • Flower, R. J., 1998. Recent environmental change in North African wetland lakes: the CASSARINA Project and the application of remote sensing for ecosystem monitoring. In J. L. Fellous (ed), Satellite-Based Observation: A Tool for the Study of the Mediterranean Basin. Proceedings of an International Symposium at Tunis, 23–27 November 1998. Centre National d’Etudes Spatiale, Toulouse: 219–224.

  • Flower, R. J., 2001. Change, stress, sustainability and aquatic ecosystem resilience in North African wetland lakes during the 20th century: an introduction to integrated biodiversity studies within the CASSARINA Project. Aquatic Ecology 35: 261–280.

    Article  Google Scholar 

  • Flower, R. J. & J. R. Thompson, 2009. An overview of integrated hydro-ecological studies in the MELMARINA Project: monitoring and modelling coastal lagoons—making management tools for aquatic resources in North Africa. Hydrobiologia. doi:10.1007/s10750-008-9674-8.

  • Flower, R. J., J. Dearing, N. Rose & P. G. Appleby, 1992. A palaeoecological assessment of recent environmental change in Moroccan wetlands. Würzburger Geographische Arbeiten 84: 17–44.

    Google Scholar 

  • Franklin, J., 1991. Land cover stratification using landsat thematic mapper data in Sahelian and Sudanian woodland and wooded grassland. Journal of Arid Environments 20: 141–163.

    Google Scholar 

  • Fuller, R. M., G. B. Groom, S. Mugisha, P. Ipulet, D. Pomeroy, A. Katende, R. Bailey & R. Ogutu-Ohwayo, 1998. The integration of field survey and remote sensing for biodiversity assessment: a case study in the tropical forests and wetlands of Sango Bay, Uganda. Biological Conservation 86: 379–391.

    Article  Google Scholar 

  • Gao, J. & Y. Liu, 2008. Mapping of land degradation from space: a comparative study of Landsat ETM + and ASTER data. International Journal of Remote Sensing 29: 4029–4043.

    Article  Google Scholar 

  • Graetz, R., 1990. Remote sensing of terrestrial ecosystem structure: an ecologist’s pragmatic view. In Hobbs, R. & H. Mooney (eds), Remote Sensing of Biosphere Functioning. Spring, New York: 5–30.

    Google Scholar 

  • Hall, F., D. Botkin, D. Strebel, K. Woods & S. Goetz, 1991. Large-scale patterns of forest succession as determined by remote sensing. Ecology 72: 628–640.

    Article  Google Scholar 

  • Hardisky, M. A., M. F. Gross & V. Klemas, 1986. Remote sensing of coastal wetlands. BioScience 36: 453–460.

    Article  Google Scholar 

  • Hess, L. L., J. M. Melack, E. M. L. M. Novo, C. C. F. Barbosa & G. M. Mary, 2003. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sensing of Environment 87: 404–428.

    Article  Google Scholar 

  • Hewson, R., C. Koch, A. Buchanan & A. Sanders, 2002. Detailed geological and regolith mapping in the Bangemall Basin, WA, using ASTER multi-spectral satellite-borne data. Communication in the Workshop on Mapping the Earth with ASTER, London.

  • Hobbs, R., 1990. Remote sensing of spatial and temporal dynamics of vegetation. In Hobbs, R. & H. Mooney (eds), Remote Sensing of Biosphere Functioning. Spring, New York: 203–219.

    Google Scholar 

  • Howman, A., 1988. The Extrapolation of spectral signatures Illustrates’ Landsat’s potential to detect wetlands. Proceedings of ICARSS 1988 Symposium, Edinburgh, Scotland, September 13–16 1988: 537–539.

  • Jensen, J., 1986. Introductory Digital Image Processing: A Remote Sensing Perspective. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Jollineau, M. Y. & P. J. Howarth, 2008. Mapping an inland wetland complex using hyperspectral imagery. International Journal of Remote Sensing 29: 3609–3631.

    Article  Google Scholar 

  • Khedr, A. A., 1997. Aquatic macrophyte distribution in Lake Manzala, Egypt. International Journal of Salt Lake Research 5: 221–239.

    Article  Google Scholar 

  • Kraïem, M. M., L. Chouba, M. Ramdani, M. H. Ahmed, J. R. Thompson & R. J. Flower, 2009. The fish fauna of three North African lagoons: specific inventories, ecological status and production. Hydrobiologia. doi:10.1007/s10750-008-9679-3.

  • Lillesand, T., J. Chipman, D. Nagel, H. Reese, M. Bobo & R. Goldman, 1998. Upper Midwest gap analysis program image processing protocol. Report for U.S. Geological Survey Environment. Management Technical Centre, Onalaska, WI, EMTC 98-G001: 25.

  • Lillesand, T. M., R. W. Kiefer & J. W. Chipman, 2008. Remote Sensing and Image Interpretation. Wiley, Hoboken, NJ.

    Google Scholar 

  • Marçal, A. R. S., J. S. Borges, J. A. Gomes & J. F. Pinto Da Costa, 2005. Land cover update by supervised classification of segmented ASTER images. International Journal of Remote Sensing 26: 1347–1362.

    Article  Google Scholar 

  • Maxwell, S. K., G. L. Schmidt & J. C. Storey, 2007. A multi-scale segmentation approach to filling gaps in Landsat ETM+ SLC-off images. International Journal of Remote Sensing 28: 5339–5356.

    Article  Google Scholar 

  • Milne, A., 1988. Change detection analysis using landsat imagery: a review of methodology. Proceedings of IGARSS 1988 Symposium, Edinburgh, Scotland, September 23–16 1988: 541–544.

  • Milne, A. & A. O’Neill, 1990. Mapping and monitoring land cover in the Willandra Lakes World Heritage Region (New South Wales, Australia). International Journal of Remote Sensing 11: 2035–2049.

    Article  Google Scholar 

  • Müllerová, J., 2005. Use of digital aerial photography for sub-alpine vegetation mapping: a case study from the Krkonoscarone Mts., Czech Republic, Vegetatio 175: 259–272.

  • Munyati, C., 2000. Wetland change detection on the Kafue Flats, Zambia, by classification of a multitemporal remote sensing image dataset. International Journal of Remote Sensing 21: 1787–1806.

    Article  Google Scholar 

  • NASA, 2001. A Shadow of a Lake: Africa’s Disappearing Lake Chad. Space Flight Center, National Aeronautics and Space Agency, Greenbelt, Maryland.

  • NASA, 2005a. Lake Nasser and the New Valley. Goddard Space Flight Center, National Aeronautics and Space Agency, Greenbelt, Maryland.

  • NASA, 2005b. Ichkeul Lake, Tunisia. National Aeronautics and Space Agency: Goddard Space Flight Center. Greenbelt, Maryland.

  • Olmanson, L. G., S. M. Kloiber, M. E. Bauer & P. L. Brezonik, 2001. Image processing protocol for regional assessment of lake water quality. Water Resources Center Technical Report 14, University of Minnesota, St. Paul.

  • Ozemi, S. L. & M. E. Bauer, 2004. Satellite remote sensing of wetlands. Wetland and Ecology Management 10: 381–402.

    Article  Google Scholar 

  • Petit, C. C. & E. F. Lambin, 2001. Integration of multi-scale remote sensing data for land cover change detection. International Journal of Geographic Information 15: 785–803.

    Article  Google Scholar 

  • Ramdani, M., R. J. Flower, N. Elkhiati, M. M. Kraïem, A. A. Fathi, H. H. Birks & S. T. Patrick, 2001. North African wetland lakes: Characterization of nine sites included in the Cassarina Project. Aquatic Ecology 35: 281–301.

    Article  Google Scholar 

  • Ramdani, M., N. Elkhiati, R. J. Flower, J. R. Thompson, L. Chouba, M. M. Kraiem, F. Ayache & M. H. Ahmed, 2009. Environmental influences on the qualitative and quantitative composition of phytoplankton and zooplankton in North African coastal lagoons. Hydrobiologia. doi:10.1007/s10750-008-9678-4.

  • Randazzo, G., D. J. Stanley, S. I. Di Geronimo & C. Amore, 1998. Human-induced sedimentological changes in Manzala Lagoon, Nile Delta, Egypt. Environmental Geology 36: 235–258.

    Article  CAS  Google Scholar 

  • Rasmussen, E. K., O. S. Petersen, J. R. Thompson, R. J. Flower & M. H. Ahmed, 2009a. Hydrodynamic-ecological model analyses of the water quality of Lake Manzala (Nile Delta, Northern Egypt). Hydrobiologia. doi:10.1007/s10750-008-9683-7.

  • Rasmussen, E. K., O. S. Petersen, J. R. Thompson, R. J. Flower, F. Ayache, M. Kraiem & L. Chouba, 2009b. Model analyses of the future water quality of the eutrophicated Ghar El Melh lagoon (Northern Tunisia). Hydrobiologia. doi:10.1007/s10750-008-9681-9.

  • Rawan, L. C. & J. C. Mars, 2001. Advances in lithologic mapping by using optical remote sensing measurements. Abstracts with programs. Geological Society of America 33: 347.

    Google Scholar 

  • Scheren, P. A. G. M., H. A. Zanting & A. M. C. Lemmens, 2000. Estimation of water pollution sources in Lake Victoria, East Africa: Application and elaboration of the rapid assessment methodology. Journal of Environmental Management 58: 235–248.

    Article  Google Scholar 

  • Schowengerdt, R. A., 2007. Remote Sensing: Models and Methods for Image Processing. Academic Press, New York.

    Google Scholar 

  • Sestini, G., 1976. Geomorphology of the Nile. In Sestini, G. & Misdorp, R (eds), Proceedings of Seminar on Nile Delta Sedimentology. Egyptian Academy of Scientific Research and Technology, Alexandria: 12–24.

  • Shindell, D., 2007. Estimating the potential for twenty-first century sudden climate change. Philosophical Transactions of the Royal Society A—Mathematical Physical and Engineering Sciences 365: 2675–2694.

    Article  CAS  Google Scholar 

  • Simis, S. G., S. W. M. Peters & H. J. Gons, 2005. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnology & Oceanography 50: 237–245.

    CAS  Article  Google Scholar 

  • Stanley, D. J., 1988. Subsidence in the northeastern Nile Delta: Rapid rates, possible causes and consequences. Science 240: 497–500.

    PubMed  Article  CAS  Google Scholar 

  • Stanley, D. J., 1996. Nile delta: Extreme case of sediment entrapment on a delta plain and consequent coastal land loss. Marine Geology 129: 189–195.

    Article  Google Scholar 

  • Stanley, D. J. & A. G. Warne, 1993. Nile Delta: Recent geological evolution and human impact. Science 260: 628–634.

    PubMed  Article  CAS  Google Scholar 

  • Teng, W., 1990. AVHRR Monitoring of U.S. Crops during the 1988 drought. Photogrammetric Engineering and Remote Sensing 56: 1143–1146.

    Google Scholar 

  • Tennessee Valley Authority, 1997. Project Document: Lake Manzala Engineered Wetland. Tennessee Valley Authority, Knoxville, USA. prepared for United Nations Development Programme, New York.

    Google Scholar 

  • Thompson, J. R., R. J. Flower, M. Ramdani, F. Ayache, M. H. Ahmed, E. K. Rasmussen & O. S. Petersen, 2009. Hydrological characteristics of three North African coastal lagoons: insights from the MELMARINA project. Hydrobiologia. doi:10.1007/s10750-008-9680-x.

  • Turner, W., S. Spector, N. Gardner, M. Fladeland, E. Sterling & M. Steininger, 2003. Remote sensing for biodiversity and conservation. Trends in ecology and Evolution 18: 306–314.

    Article  Google Scholar 

  • Underwood, E., M. Mulitsch, J. Greenberg, M. Whiting, S. Ustin & S. Kefauver, 2006. Mapping invasive aquatic vegetation in the Sacramento-San Joaquin Delta using hyperspectral imagery. Environmental Monitoring and Assessment 121: 47–64.

    PubMed  Article  CAS  Google Scholar 

  • UNEP, 2005. Africa’s Lakes, Atlas of Our Changing Environment. United Nations Environment Programme, Nairobi Kenya.

  • Wilcox, K. L., S. A. Petrie, L. A. Maynard & S. W. Meyer, 2003. Historical distribution and abundance of Phragmites australis at Long Point, Lake Erie, Ontario. Journal of Great Lakes Research 29: 664–680.

    Article  Google Scholar 

  • World Bank/Ministry of Public Works and Water Resources, Egypt, 1992. Northern Sinai Agricultural Development Project Environmental Impact Assessment—Draft. Prepared by Euroconsult, Arnhem, The Netherlands with Pacer and Darwish Engineers, Cairo.

  • Zahran, M. A., M. E. Abu Ziada, M. A. El-Demerdash & A. A. Khedr, 1988. Vegetation of Lake Manzala islands, Egypt. Mansoura Science Bulletin 15: 607–643.

    Google Scholar 

  • Zahran, M. A., M. A. El-Demerdash & I. A. Mashaly, 1990. Vegetation types of the deltaic Mediterranean coast of Egypt and their environment. Journal of Vegetation Science 1: 305–310.

    Article  Google Scholar 

  • Zhang, C., W. Li & D. Travis, 2007. Gaps-fill of SLC-off Landsat ETM+ satellite image using a geostatistical approach. International Journal of Remote Sensing 28: 5103–5122.

    Article  Google Scholar 

Download references

Acknowledgments

The MELMARINA Project was financed by the EU Framework V INCO-Med Programme (Grant ICA3-CT2002-10009). The authors acknowledge the assistance of all the partner institutions in the project. Particular thanks are extended to Prof. A. El-Dessouki, Chairman of NARSS for facilitating the project work in Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Ahmed.

Additional information

Guest editors: J. R. Thompson & R. J. Flower

Hydro-ecological Monitoring and Modelling of North African Coastal Lagoons

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ahmed, M.H., El Leithy, B.M., Thompson, J.R. et al. Application of remote sensing to site characterisation and environmental change analysis of North African coastal lagoons. Hydrobiologia 622, 147–171 (2009). https://doi.org/10.1007/s10750-008-9682-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9682-8

Keywords

  • Coastal lagoons
  • North Africa
  • Remote sensing
  • Environmental change
  • Image interpretation and classification