Abstract
Shallow lakes often alternate between two possible states: one clear with submerged macrophytes, and another one turbid, dominated by phytoplankton. A third type of shallow lakes, the inorganic turbid, result from high contents of suspended inorganic material, and is characterized by low phytoplankton biomass and macrophytes absence. In our survey, the structure and photosynthetic properties (based on 14C method) of phytoplankton were related to environmental conditions in these three types of lakes in the Pampa Plain. The underwater light climate was characterized. Clear-vegetated lakes were more transparent (K d 4.5–7.7 m−1), had high DOC concentrations (>45 mg l−1), low phytoplankton Chl a (1.6–2.7 μg l−1) dominated by nanoflagellates. Phytoplankton productivity and photosynthetic efficiency (α ~ 0.03 mgC mgChla −1 h−1 W−1 m2) were relatively low. Inorganic-turbid lakes showed highest K d values (59.8–61.4 m−1), lowest phytoplankton densities (dominated by Bacillariophyta), and Chl a ranged from 14.6 to 18.3 μg l−1. Phytoplankton-turbid lakes showed, in general, high K d (4.9–58.5 m−1) due to their high phytoplankton abundances. These lakes exhibited the highest Chl a values (14.2–125.7 μg l−1), and the highest productivities and efficiencies (maximum 0.56 mgC mgChla −1 h−1 W−1 m2). Autotrophic picoplankton abundance, dominated by ficocianine-rich picocyanobacteria, differed among the shallow lakes independently of their type (0.086 × 105–41.7 × 105 cells ml−1). This article provides a complete characterization of phytoplankton structure (all size fractions), and primary production of the three types of lakes from the Pampa Plain, one of the richest areas in shallow lakes from South America.








Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Agawin, N. S. R., C. M. Duarte & S. Agusti, 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnology and Oceanography 45: 591–600.
APHA (American Public Health Association), 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. APHA, Washington DC: 1268 pp.
Baigún, C. & R. Quirós, 1985. Introducción de peces exóticos en la República Argentina. Informe Técnico No 2. Departamento de Aguas Continentales (INIDEP), Mar del Plata, Argentina: 1–90.
Callieri, C. & J. G. Stockner, 2002. Freshwater autotrophic picoplankton: A review. Journal of Limnology 61: 1–14.
Cardoso, L. & D. da Motta Marques, 2003. Rate of change of the phytoplankton community in Itapeva Lake (North Coast of Rio Grande do Sul, Brazil), based on the wind driven hydrodynamic regime. Hydrobiologia 497: 1–12.
Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity: Fish predation and herbivory can regulate lake ecosystems. Bioscience 35: 634–639.
Chorus, I. & J. Bartram, 1999. Toxic Cyanobacteria in Water. E & F.N. Spon, London.
Eloranta, P., 1995. Phytoplankton of the national park lakes in central and southern Finland. Annales Botanici Fennici 32: 193–203.
Fernández Cirelli, A. & P. Miretzky, 2002. Lagos poco profundos de la Pampa Argentina. Relación con aguas subterráneas someras. In Fernández Cirelli, A. & G. Chalar Marquisá (eds), El agua en Iberoamérica. De la limnología a la gestión en Sudamérica. CYTED XVII, CETA—Centro de estudios Transdisciplinarios del Agua, Facultad de Ciencias Veterinarias, Buenos Aires: 43–52.
Ferrero, E., M. Eöry, G. Ferreyra, I. Schloss, H. Zagarese, M. Vernet & F. Momo, 2006. Vertical mixing and ecological effects of ultraviolet radiation in planktonic communities. Photochemistry and Photobiology 82: 898–902.
Gabellone, N., L. C. Solari & M. C. Claps, 2001. Planktonic and physico-chemical dynamics of markedly fluctuating backwater pond associated with a lowland river (Salado River, Buenos Aires, Argentina). Lakes and Reservoirs: Research and Management 6: 133–142.
Happey-Wood, C. M., 1988. Ecology of freshwater planktonic green algae. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 175–226.
Hurley, J. P., 1988. Analysis of aquatic pigments by high performance liquid chromatography. Journal of Analytical Purification 3: 12–16.
Izaguirre, I. & A. Vinocur, 1994a. Typology of shallow lakes of the Salado River Basin (Argentina), based on phytoplankton communities. Hydrobiologia 277: 49–62.
Izaguirre, I. & A. Vinocur, 1994b. Algal assemblages from shallow lakes of the Salado River Basin (Argentina). Hydrobiologia 289: 57–64.
Jasser, I. & L. Arvola, 2003. Potential effects of abiotic factors on the abundance of autotrophic picoplankton in four boreal lakes. Journal of Plankton Research 25: 873–883.
Jones, R. I., 2000. Mixotrophy in planktonic protists: An overview. Freshwater Biology 45: 219–226.
Kalff, J., 2002. Limnology. Prentice Hall, New Jersey, USA.
Katechakis, A. & H. Stibor, 2006. The mixotroph Ochromonas tuberculata may invade and suppress specialist phago- and photoautotroph plankton communities depending on nutrient conditions. Oecologia 148: 692–701.
Kemp, P. F., B. F. Sherr, E. B. Sherr & J. J. Cole, 1993. Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, FL.
Kristiansen, J., 2005. Golden Algae. A Biology of Chrysophytes. A.R.G. Gantner Verlag Kommanditgesellschaft, Ruggell, Liechtenstein.
Laurion, I., A. Lami & R. Sommaruga, 2002. Distribution of mycosporine-like aminoacids and photoprotective caraotenoids among freshwater phytoplankton assemblages. Aquatic Microbial Ecology 26: 283–294.
Lepistö, L. & A.-L. Holopainen, 2003. Occurrence of Cryptophyceae and katablepharids in boreal lakes. Hydrobiologia 502: 307–314.
MacDonagh, M., G. Ruiz, L. C. Solari & N. Gabellone, 2000. Fitoplancton de una laguna de moderada eutrofia en la provincia de Buenos Aires. Diversidad y Ambiente 1: 37–43.
Malinsky-Rushansky, N., T. Berman, T. Berner, Y. Yacobi & Z. Dubinsky, 2002. Physiological characteristics of picophytoplankton, isolated from Lake Kinneret: Responses to light and temperature. Journal of Plankton Research 24: 1173–1183.
Mantoura, R. F. C. & C. A. Llewellyn, 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Analytica Chimica Acta 151: 297–314.
Padisák, J. & M. Dokulil, 1994. Meroplankton dynamics in a saline, turbulent shallow lake (Neusiedlersee, Austria and Hungary). Hydrobiologia 289: 23–42.
Padisák, J., E. Soróczki-Pintér & Z. Rezner, 2003. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity plankton—An experimental study. Hydrobiologia 500: 243–257.
Paerl, H. W., 1988. Growth and reproductive strategies of freshwater blue-green algae. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 261–315.
Pérez, G. L., A. Torremorell, J. Bustingorry, R. Escaray, A. P. Pérez, M. Diéguez & H. E. Zagarese, in press. Optical characteristics of shallow lakes from the Pampa and Patagonia regions of Argentina. Limnologica.
Platt, T. C., L. Gallegos & W. G. Harrison, 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research 38: 687–701.
Quirós, R. & E. Drago, 1999. The environmental state of Argentinean lakes: An overview. Lakes and reservoirs: Research and Management 4: 55–64.
Quirós, R., A. M. Renella, M. B. Boveri, J. J. Rosso & A. Sosnovsky, 2002. Factores que afectan la estructura y el funcionamiento de las lagunas pampeanas. Ecología Austral 12: 175–185.
Quirós, R., M. B. Boveri, C. A. Petrachi, A. M. Renella, J. J. Rosso, A. Sosnovsky & H. T. von Bernard, 2006. Los efectos de la agriculturización del humedal pampeano sobre la eutrofización de sus lagunas. In Tundizi, J. G., T. Matsumura-Tundisi & C. Sidagis Galli (eds), Eutrofização na América do Sul: Causas, conseqüèncias e tecnologias de gerenciamento e controle: 1–16.
Renella, A. M. & R. Quirós, 2006. The effects of hydrology on plankton biomass in shallow lakes of the Pampa Plain. Hydrobiologia 556: 181–191.
Reynolds, C. S., 1988. Functional Morphology and the Adaptive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge.
Reynolds, C. S., 1994. The long, the short and the stalled: On the attributes of phytoplankton selected by physical mixing in lakes and rivers. Hydrobiologia 189: 9–21.
Reynolds, C. S., 1997. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Ecology Institute, Oldendorf/Luhe.
Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge, UK.
Reynolds, C. S., V. L. M. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.
Roland, F. & F. de Assis Esteves, 1998. Effects of bauxite tailing on PAR attenuation in an Amazonian crystalline water lake. Hydrobiologia 377: 1–17.
Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman & Hall, London.
Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.
Sharp, J. H., E. T. Peltzer, M. J. Alperin, G. Cauwet, J. W. Farrington, B. Fry, D. M. Karl, J. H. Martin, A. Spitzy, S. Tugrul & C. A. Carlson, 1993. Procedures subgroup report. Marine Chemistry 41: 37–49.
Sierra, E. M., M. E. Fernández Long & C. Bustos, 1994. Cronología de inundaciones y sequías en el noreste de la provincia de Buenos Aires 1911-89. Revista de la Facultad de Agronomía 14: 241–249.
Sinistro, R., I. Izaguirre & V. Asikian, 2007. Experimental study on the microbial plankton community in a South American wetland (Lower Paraná River Basin), and the effect of the light deficiency due to floating macrophytes. Journal of Plankton Research 28: 753–768.
Sommaruga, M. & R. D. Robarts, 1997. The significance of autotrophic and heterotrophic picoplankton in hypereutrophic ecosystems. FEMS Microbiology Ecology 24: 187–200.
Søndergaard, M., 1991. Phototrophic picoplankton in temperate lakes: Seasonal abundance and importance along a trophic gradient. Internationale Revue der Gesamten Hydrobiologie 76: 505–522.
Søndergaard, M. & B. Moss, 1998. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. Ecological Studies 131: 115–132.
Sorokin, Y. I., 1999. Aquatic Microbial Ecology. Backhuys Publishers, Leiden.
Sosnovsky, A., 2007. Factores que determinan la estructura del zooplancton en pequeños cuerpos de agua de la Región Pampeana. Ph.D. Dissertation, Universidad de Buenos Aires, Buenos Aires, Argentina.
Steeman Nielsen, E., 1952. The use of radiocarbon (14C) for measuring organic production in the sea. Journal du Conseil International pour l’Exploration de la Mer 18: 117–140.
Stockner, J. G., C. Callieri & G. Cronberg, 2000. Picoplankton and other non-bloom-forming Cyanobacteria in lakes. In Whitton, B. A. & M. Potts (eds), The Ecology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht: 195–231.
Torremorell, A., J. Bustingorry, R. Escaray & H. Zagarese, 2007. Seasonal dynamics of a large, shallow lake, laguna Chascomús: The role of light limitation and other physical variables. Limnologica 37: 100–108.
Tranvik, L. J., K. G. Porter & J. M. Sieburth, 1989. Occurrence of bacterivory in Cryptomonas, a common freshwater phytoplankter. Oecologia 78: 473–476.
Tricart, J. L., 1973. Geomorfología de la Pampa Deprimida. INTA, Colección Científica no XII, Buenos Aires.
Unrein, F. 2001. Efecto de los nutrientes y el pH sobre la estructura del fitoplancton en ambientes de la llanura aluvial del Paraná Inferior. Ph.D. Dissertation, Universidad de Buenos Aires, Buenos Aires, Argentina.
Unrein, F., R. Massana, L. Alonso-Sáez & J. M. Gasol, 2007. Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnolology and Oceanography 52: 456–469.
Urabe, J., T. B. Gurung, T. Yoshida, T. Sekino, M. Nakanishi, M. Maruo & E. Nakayama, 2000. Diel changes in phagotrophy by Cryptomonas in Lake Biwa. Limnology and Oceanography 45: 1558–1563.
Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitteilungen Internationale Vereinigung Limnologie 9: 1–38.
Villar, C., L. de Cabo, P. Vaithiyanathan & C. Bonetto, 1998. River–floodplain interactions: Nutrient concentrations in the Lower Paraná River. Archiv für Hydrobiologie 142: 433–450.
Vörös, L., C. Callieri, K. V. Balogh & R. Bertoni, 1998. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369/370: 117–125.
Acknowledgments
This research was supported by a grant from Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) PIP 5354, and a grant from the University of Buenos Aires UBACyT X838, and ANPCyT PICT 13550. We thank the reviewers for their valuable suggestions on the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Handling editor: J. Padisak
Rights and permissions
About this article
Cite this article
Allende, L., Tell, G., Zagarese, H. et al. Phytoplankton and primary production in clear-vegetated, inorganic-turbid, and algal-turbid shallow lakes from the pampa plain (Argentina). Hydrobiologia 624, 45–60 (2009). https://doi.org/10.1007/s10750-008-9665-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10750-008-9665-9


