Skip to main content
Log in

Habitat effects on invertebrate drift in a small trout stream: implications for prey availability to drift-feeding fish

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In this study, we focused on the drivers of micro- and mesohabitat variation of drift in a small trout stream with the goal of understanding the factors that influence the abundance of prey for drift-feeding fish. We hypothesized that there would be a positive relationship between velocity and drift abundance (biomass concentration, mg/m3) across multiple spatial scales, and compared seasonal variation in abundance of drifting terrestrial and aquatic invertebrates in habitats that represent the fundamental constituents of stream channels (pools, glides, runs, and riffles). We also examined how drift abundance varied spatially within the water column. We found no relationship between drift concentration and velocity at the microhabitat scale within individual pools or riffles, suggesting that turbulence and short distances between high- and low-velocity microhabitats minimize changes in drift concentration through settlement in slower velocity microhabitats. There were also minimal differences in summer low-flow drift abundance at the mesohabitat scale, although drift concentration was highest in riffle habitats. Similarly, there was no differentiation of drifting invertebrate community structure among summer samples collected from pools, glides, runs, and riffles. Drift concentration was significantly higher in winter than in summer, and variation in drift within individual mesohabitat types (e.g., pools or riffles) was lower during winter high flows. As expected, summer surface samples also had a significantly higher proportion of terrestrial invertebrates and higher overall biomass than samples collected from within the water column. Our results suggest that turbulence and the short length of different habitat types in small streams tend to homogenize drift concentration, and that spatial variation in drift concentrations may be affected as much by fish predation as by entrainment rates from the benthos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allan, J. D., 1981. Determinants of diet of brook trout (Salvelinus fontinalis) in a mountain stream. Canadian Journal of Fisheries and Aquatic Sciences 38: 184–192.

    Article  Google Scholar 

  • Allan, J. D., M. S. Wipfli, J. P. Caouette, A. Prussian & J. Rodgers, 2003. Influence of streamside vegetation on inputs of terrestrial invertebrates to salmonid food webs. Canadian Journal of Fisheries and Aquatic Sciences 60: 309–320.

    Article  Google Scholar 

  • Angermeier, P. L. & J. R. Karr, 1983. Fish communities along environmental gradients in a system of tropical streams. Environmental Biology of Fishes 9: 117–135.

    Article  Google Scholar 

  • Bacon, P. J., W. S. C. Gurney, W. Jones, I. S. McLaren & A. F. Youngson, 2005. Seasonal growth patterns of wild juvenile fish: partitioning variation among explanatory variables, based on individual growth trajectories of Atlantic salmon (Salmo salar) parr. Journal of Animal Ecology 74: 1–11.

    Article  Google Scholar 

  • Benke, A., A. D. Huryn, L. A. Smock & J. B. Wallace, 1999. Length–mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society 18: 308–343.

    Article  Google Scholar 

  • Bond, N. R., G. L. W. Perry & B. J. Downes, 2000. Dispersal of organisms in a patchy stream environment under different settlement scenarios. Journal of Animal Ecology 69: 608–619.

    Article  Google Scholar 

  • Brittain, J. E. & T. J. Eikeland, 1988. Invertebrate drift—A review. Hydrobiologia 166: 77–93.

    Article  Google Scholar 

  • Cellot, B., 1996. Influence of side-arms on aquatic macroinvertebrate drift in the main channel of a large river. Freshwater Biology 35: 149–164.

    Article  Google Scholar 

  • Ciborowski, J. J. H., 1983. Influence of current velocity, density, and detritus on drift of two mayfly species (Ephemeroptera). Canadian Journal of Zoology 61: 119–125.

    Google Scholar 

  • Crowder, D. W. & P. Diplas, 2002. Vorticity and circulation: spatial metrics for evaluating flow complexity in stream habitats. Canadian Journal of Fisheries and Aquatic Sciences 59: 633–645.

    Article  Google Scholar 

  • Culp, J. M., G. J. Scrimgeour & C. E. Beers, 1994. The effect of sample duration on the quantification of stream drift. Freshwater Biology 31: 165–173.

    Article  Google Scholar 

  • Cummins, K. W. & J. C. Wuycheck, 1971. Caloric equivalents for investigations in ecological energetics. Internationale Vereinigung fur Theoretische und Angewandte Limnologie Verhandlungen 18: 1–158.

    Google Scholar 

  • Dedual, M. & K. J. Collier, 1995. Aspects of juvenile rainbow-trout (Oncorhynchus mykiss) diet in relation to food-supply during summer in the lower Tongariro River, New Zealand. New Zealand Journal of Marine and Freshwater Research 29: 381–391.

    Google Scholar 

  • Edwards, C. A., 1966. Relationships between weights, volumes, and numbers of animals. In Graff, O. & J. E. Satchell (eds), Progress in Soil Biology: Proceedings of the Colloquium on Dynamics of Soil Communities. North-Holland Publishing Company, Amsterdam: 585–591.

  • Elliott, J. M., 1967. Food of trout (Salmo trutta) in a Dartmoor stream. Journal of Applied Ecology 4: 59–71.

    Article  Google Scholar 

  • Elliot, J. M., 1971. The distance traveled by drifting invertebrates in a Lake District stream. Oecologia 6: 350–379.

    Article  Google Scholar 

  • Elliott, J. M., 1973. Food of brown and rainbow-trout (Salmo trutta and S. gairdneri) in relation to abundance of drifting invertebrates in a mountain stream. Oecologia 12: 329–347.

    Article  Google Scholar 

  • Elliot, J. M., 1976. The energetics of feeding, metabolism and growth of brown trout (Salmo trutta L.) in relation to body weight, water temperature and ration size. Journal of Animal Ecology 45: 923–948.

    Article  Google Scholar 

  • Elliot, J. M., 1994. Quantitative Ecology and The Brown Trout. Oxford University Press, Oxford.

    Google Scholar 

  • Ensign, W. E., R. J. Strange & S. E. Moore, 1990. Summer food limitation reduces brook and rainbow-trout biomass in a southern Appalachian stream. Transactions of the American Fisheries Society 119: 894–901.

    Article  Google Scholar 

  • Gibbins, C., V. Damià, R. J. Batalla & C. M. Gomez, 2007. Shaking and moving: low rates of sediment transport trigger mass drift of stream invertebrates. Canadian Journal of Fisheries and Aquatic Sciences 64: 1–5.

    Article  Google Scholar 

  • Gowing, G. & H. F. Recher, 1984. Length–weight relationships for invertebrates from forests in south-eastern New South Wales. Australian Journal of Ecology 9: 5–8.

    Article  Google Scholar 

  • Grossman, G., P. A. Rincon, M. D. Farr & R. E. Ratajczak, 2002. A new optimal foraging model predicts habitat use by drift-feeding stream minnows. Ecology of Freshwater Fish 11: 2–10.

    Article  Google Scholar 

  • Hansen, E. A. & G. P. Closs, 2007. Temporal consistency in the long-term spatial distribution of macroinvertebrate drift along a stream reach. Hydrobiologia 575: 361–371.

    Article  Google Scholar 

  • Hayes, J. W., J. D. Stark & K. A. Shearer, 2000. Development and test of a whole-lifetime foraging and bioenergetics growth model for drift-feeding brown trout. Transactions of the American Fisheries Society 129: 315–332.

    Article  Google Scholar 

  • Hayes, J. W., N. F. Hughes & L. H. Kelly, 2007. Process-based modelling of invertebrate drift transport, net energy intake and reach carrying capacity for drift-feeding salmonids. Ecological Modelling 207: 171–188.

    Article  Google Scholar 

  • Hill, J. & G. Grossman, 1993. An energetic model of microhabitat use for rainbow trout and rosyside dace. Ecology 74: 685–698.

    Article  Google Scholar 

  • Holtby, L. B., B. C. Andersen & R. K. Kadowaki, 1990. Importance of smolt size and early ocean growth to interannual variability in marine survival of coho salmon (Oncorhynchus kisutch). Canadian Journal of Fisheries and Aquatic Sciences 47: 2181–2194.

    Article  Google Scholar 

  • Hughes, N. F., 1992. Selection of positions by drift-feeding salmonids in dominance hierarchies: model and test for Arctic grayling (Thymallus arcticus) in subarctic mountain streams, interior Alaska. Canadian Journal of Fisheries and Aquatic Sciences 49: 1999–2008.

    Google Scholar 

  • Hughes, N. F. & L. M. Dill, 1990. Position choice by drift-feeding salmonids: model and test for Arctic grayling (Thymallus arcticus) in subarctic mountain streams, interior Alaska. Canadian Journal of Fisheries and Aquatic Sciences 47: 2039–2048.

    Article  Google Scholar 

  • Huryn, A. D., 1996. An appraisal of the Allen paradox in a New Zealand trout stream. Limnology and Oceanography 41: 243–252.

    Google Scholar 

  • Huryn, A. D. & J. B. Wallace, 1987. Local geomorphology as a determinant of macrofaunal production in a mountain stream. Ecology 68: 1932–1942.

    Article  Google Scholar 

  • Jackson, D. A., 1993. Multivariate analysis of benthic invertebrate communities: the implication of choosing particular data standardizations, measures of association, and ordination methods. Hydrobiologia 268: 9–26.

    Google Scholar 

  • Johnston, N. T. & P. A. Slaney, 1996. Fish habitat assessment procedure. Watershed Restoration Technical Circular 8.

  • Kawaguchi, Y. & S. Nakano, 2001. Contribution of terrestrial invertebrates to the annual resource budget for salmonids in forest and grassland reaches of a headwater stream. Freshwater Biology 46: 303–316.

    Article  Google Scholar 

  • Keeley, E. R. & J. W. A. Grant, 1997. Allometry of diet selectivity in juvenile Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 54: 1894–1902.

    Article  Google Scholar 

  • Mackay, R. J., 1992. Colonization by lotic macroinvertebrates—A review of processes and patterns. Canadian Journal of Fisheries and Aquatic Sciences 49: 617–628.

    Article  Google Scholar 

  • Merritt, R. W. & K. W. Cummins, 1984. An Introduction to the Aquatic Insects of North America. Kendall/Hunt, Dubuque.

    Google Scholar 

  • Meyer, E., 1989. The relationship between body length parameters and dry mass in running water invertebrates. Hydrobiologia 117: 191–203.

    Google Scholar 

  • Montgomery, D. R., J. M. Buffington, R. Smith, K. M. Schmidt & G. Pess, 1995. Pool spacing in forest channels. Water Resources Research 31: 1097–1105.

    Article  Google Scholar 

  • Moore, K., K. Jones & J. Dambacher, 1997. Methods for Stream Habitat Surveys. Oregon Department of Fish and Wildlife, Corvalis.

    Google Scholar 

  • Nielsen, J. L., 1992. Microhabitat-specific foraging behaviour, diet, and growth of juvenile Coho salmon. Transactions of the American Fisheries Society 121: 617–634.

    Article  Google Scholar 

  • Nislow, K. H., C. Folt & M. Seande, 1998. Food and foraging behavior in relation to microhabitat use and survival of age-0 Atlantic salmon. Canadian Journal of Fisheries and Aquatic Sciences 55: 116–127.

    Article  Google Scholar 

  • O’Hop, J. & J. B. Wallace, 1983. Invertebrate drift, discharge, and sediment relations in a southern Appalachian headwater stream. Hydrobiologia 98: 71–84.

    Article  Google Scholar 

  • Peterson, J. T. & C. F. Rabeni, 2001. Evaluating the physical characteristics of channel units in an Ozark stream. Transactions of the American Fisheries Society 130: 898–910.

    Article  Google Scholar 

  • Ramirez, A. & C. M. Pringle, 1998. Invertebrate drift and benthic community dynamics in a lowland neotropical stream, Costa Rica. Hydrobiologia 386: 19–26.

    Article  Google Scholar 

  • Reisen, W. K. & R. Prins, 1972. Some ecological relationships of invertebrate drift in Praters Creek, Pickens County, South Carolina. Ecology 53: 876–884.

    Article  Google Scholar 

  • Roff, J. C. & R. R. Hopcroft, 1986. High precision microcomputer based measuring system for ecological research. Canadian Journal of Fisheries and Aquatic Sciences 43: 2044–2048.

    Article  Google Scholar 

  • Romaniszyn, E. D., J. J. Hutchens & J. B. Wallace, 2007. Aquatic and terrestrial invertebrate drift in southern Appalachian mountain streams: implications for trout food resources. Freshwater Biology 52: 1–11.

    Article  Google Scholar 

  • Romero, N., R. E. Gresswell & J. L. Li, 2005. Changing patterns in coastal cutthroat trout (Oncorhynchus clarki clarki) diet and prey in a gradient of deciduous canopies. Canadian Journal of Fisheries and Aquatic Sciences 62: 1797–1807.

    Article  Google Scholar 

  • Rosenfeld, J. S., 2003. Assessing the habitat requirements of stream fishes: an overview and evaluation of different approaches. Transactions of the American Fisheries Society 132: 953–968.

    Article  Google Scholar 

  • Rosenfeld, J. S. & S. Boss, 2001. Fitness consequences of habitat use for juvenile cutthroat trout: energetic costs and benefits in pools and riffles. Canadian Journal of Fisheries and Aquatic Sciences 58: 585–593.

    Article  Google Scholar 

  • Rosenfeld, J. S., M. Porter & E. A. Parkinson, 2000. Habitat factors affecting the abundance and distribution of juvenile cutthroat trout and coho salmon. Canadian Journal of Fisheries and Aquatic Sciences 57: 766–774.

    Article  Google Scholar 

  • Rosenfeld, J. S., T. Leiter, G. Lindner & L. Rothman, 2005. Food abundance alters habitat selection, growth, and habitat suitability curves for juvenile coho salmon. Canadian Journal of Fisheries and Aquatic Sciences 62: 1691–1701.

    Article  Google Scholar 

  • Rosenfeld, J. S., J. R. Post, G. Robins & T. Hatfield, 2007. Hydraulic geometry as a physical template for the River Continuum: application to optimal flows and longitudinal trends in fish habitat. Canadian Journal of Fisheries and Aquatic Sciences 64: 755–767.

    Article  Google Scholar 

  • Sabo, J. L., J. L. Bastow & M. E. Power, 2002. Length-mass relationships for adult aquatic and terrestrial invertebrates in a California watershed. Journal of the North American Benthological Society 21: 336–343.

    Article  Google Scholar 

  • Sagar, P. M., 1983. Invertebrate recolonization of previously dry channels in the Rakaia River. New Zealand Journal of Marine and Freshwater Research 17: 377–386.

    Google Scholar 

  • Sagar, P. M. & G. J. Glova, 1988. Diel feeding periodicity, daily ration and prey selection of a riverine population of juvenile chinook salmon, Oncorhynchus tshawytscha (walbaum). Journal of Fish Biology 33: 643–653.

    Article  Google Scholar 

  • Sagar, P. M. & G. J. Glova, 1992. Invertebrate drift in a large, braided New Zealand river. Freshwater Biology 27: 405–416.

    Article  Google Scholar 

  • Sample, B. E., R. J. Cooper, R. D. Greer & R. C. Whitmore, 1993. Estimation of insect biomass by length and width. American Midland Naturalist 129: 241–247.

    Article  Google Scholar 

  • SAS Institute, 2002. Statistical Analysis System, Version 9.1. SAS Institute, Carey, NC.

  • Shannon, J. P., D. W. Blinn, P. L. Benenati & K. P. Wilson, 1996. Organic drift in a regulated desert river. Canadian Journal of Fisheries and Aquatic Sciences 53: 1360–1369.

    Article  Google Scholar 

  • Shaw, D. W. & G. W. Minshall, 1980. Colonization of an introduced substrate by stream macroinvertebrates. Oikos 34: 259–271.

    Article  Google Scholar 

  • Shearer, K. A., J. D. Stark, J. W. Hayes & R. G. Young, 2003. Relationships between drifting and benthic invertebrates in three New Zealand rivers: implications for drift-feeding fish. New Zealand Journal of Marine and Freshwater Research 37: 809–820.

    Article  Google Scholar 

  • Siler, E. R., J. B. Wallace & S. L. Eggert, 2001. Long-term effects of resource limitation on stream invertebrate drift. Canadian Journal of Fisheries and Aquatic Sciences 58: 1624–1637.

    Article  Google Scholar 

  • Stark, J. D., K. A. Shearer & J. W. Hayes, 2002. Are aquatic invertebrate drift densities uniform? Implications for salmonid foraging models. Verhandlungen Internationale Vereinigung für theoretische und angewandte Limnologie 28: 988–991.

    Google Scholar 

  • Statzner, B., J. M. Elouard & C. Dejoux, 1987. Field experiments on the relationship between drift and benthic densities of aquatic insects in tropical streams (Ivory Coast) III. Trichoptera. Freshwater Biology 17: 391–404.

    Article  Google Scholar 

  • Townsend, C. R. & A. G. Hildrew, 1976. Field experiments on drifting, colonization and continuous redistribution of stream benthos. Journal of Animal Ecology 45: 759–772.

    Article  Google Scholar 

  • Van Winkle, W., H. I. Jager, S. F. Railsback, B. D. Holcomb, T. K. Studley & J. E. Baldrige, 1998. Individual-based model of sympatric populations of brown and rainbow trout for instream flow assessment: model description and calibration. Ecological Modelling 110: 175–207.

    Article  Google Scholar 

  • Waters, T. F., 1962. A method to estimate the production rate of stream bottom invertebrates. Transactions of the American Fisheries Society 91: 243–250.

    Article  Google Scholar 

  • Wilzbach, M. A., K. W. Cummins & J. D. Hall, 1986. Influence of habitat manipulations on interactions between cutthroat trout and invertebrate drift. Ecology 67: 898–911.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Leonardo Huato for assistance in the field and Diane Srivastava for providing laboratory space. This research was partly funded by the British Columbia Conservation Corps and Forest Renewal, BC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine S. Leung.

Additional information

Handling editor: Robert Bailey

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, E.S., Rosenfeld, J.S. & Bernhardt, J.R. Habitat effects on invertebrate drift in a small trout stream: implications for prey availability to drift-feeding fish. Hydrobiologia 623, 113–125 (2009). https://doi.org/10.1007/s10750-008-9652-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9652-1

Keywords

Navigation