Skip to main content

Advertisement

Log in

Landscape responses to wetland eutrophication: loss of slough habitat in the Florida Everglades, USA

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Much of the historical Everglades has been either lost or degraded as a result of human activities. Among the aquatic habitats that comprise the Everglades landscape mosaic, open-water sloughs support critical ecological functions and appear especially sensitive to both hydrologic and water-quality perturbations. We used a combination of remote sensing and on-the-ground sampling to document spatial changes in the extent and vegetative composition of sloughs along a phosphorus (P) gradient in the northern Everglades. Increasing levels of water and soil P were associated with a decline in slough coverage, loss of the abundant native periphyton community, and a shift in dominant macrophyte species. The characteristic slough macrophyte species Eleocharis cellulosa and Nymphaea odorata exhibited different sensitivities to P enrichment, but both species declined with enrichment as slough habitats were invaded by Typha domingensis, a species that is known to expand aggressively in response to enrichment. A limited amount of open-water habitat occurred in highly enriched areas, but these habitats were maintained largely as a result of airboat disturbance and did not contain characteristic slough vegetation. Many changes in slough coverage and composition occurred in areas where water and soil P concentrations were only marginally higher than background levels. Our findings support the need for Everglades hydrologic restoration efforts to adhere to strict water-quality standards for P to avoid further degradation of this key landscape feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Chang, I., G. C. Tiao & C. Chen, 1988. Estimation of time series parameters in the presence of outliers. Technometrics 30: 193–204.

    Article  Google Scholar 

  • Chen, H., I. A. Mendelssohn, B. Lorenzen, H. Brix & S. Miao, 2005. Growth and nutrient responses of Eleocharis cellulosa (Cyperaceae) to phosphate level and redox intensity. American Journal of Botany 92: 1457–1466.

    Article  Google Scholar 

  • Childers, D. L., R. F. Doren, R. D. Jones, G. B. Noe, M. Rugge & L. J. Scinto, 2003. Decadal change in vegetation and soil phosphorus pattern across the Everglades Landscape. Journal of Environmental Quality 32: 344–362.

    PubMed  CAS  Google Scholar 

  • Crozier, G. E. & D. E. Gawlik, 2002. Avian response to nutrient enrichment in an oligotrophic wetland, the Florida Everglades. The Condor 104: 631–642.

    Article  Google Scholar 

  • Davis, J. H. Jr., 1943. The natural features of southern Florida, especially the vegetation, and the Everglades. Bulletin 25, Florida Geological Survey, Tallahassee.

  • Davis, S. M., L. H. Gunderson, W. A. Park, J. R. Richardson & J. E. Mattson, 1994. Landscape dimension, composition, and function in a changing Everglades ecosystem. In Davis, S. M. & J. C. Ogden (eds), Everglades: The Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, FL: 419–444.

    Google Scholar 

  • Gaiser, E. E., J. C. Trexler, J. H. Richards, D. L. Childers, D. Lee, A. L. Edwards, L. J. Scinto, K. Jayachandran, G. B. Noe & R. D. Jones, 2005. Cascading ecological effects of low-level phosphorus enrichment in the Florida Everglades. Journal of Environmental Quality 34: 717–723.

    PubMed  CAS  Google Scholar 

  • Gawlik, D. E., 2002. The effects of prey availability on the numerical response by wading birds. Ecological Monographs 72: 329–346.

    Google Scholar 

  • Gunderson, L. H., 2001. Managing surprising ecosystems in southern Florida. Ecological Economics 37: 371–378.

    Article  Google Scholar 

  • Hagerthey, S. E., S. Newman, K. Rutchey, E. P. Smith & J. Godin, 2008. Multiple regime shifts in a subtropical peatland: Establishing community specific thresholds to eutrophication. Ecological Monographs 78: 547–565.

    Article  Google Scholar 

  • Hoffman, W., G. T. Bancroft & R. J. Sawicki, 1994. Foraging habitat of wading birds in the water conservation areas of the Everglades. In Davis, S. M. & J. C. Ogden (eds), Everglades: The Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, FL: 585–614.

    Google Scholar 

  • Kushlan J. A., 1989. Avian use of fluctuating wetlands. In Sharitz, R. R. & J. W. Gibbons (eds), Freshwater Wetlands and Wildlife. Symposium Series No. 61, Oak Ridge, TN, U.S. Department of Energy Office of Scientific and Technical Information: 593–604.

  • Light, S. S. & J. W. Dineen, 1994. Water control in the Everglades: A historical perspective. In Davis, S. M. & J. C. Ogden (eds), Everglades: The Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, Florida: 47–84.

    Google Scholar 

  • Liston, S. E., S. Newman & J. C. Trexler, 2008. Macroinvertebrate community response to eutrophication in an oligotrophic wetland: An in situ mesocosm experiment. Wetlands 28: 686–694.

    Article  Google Scholar 

  • Loftus, W. F. & A. Eklund, 1994. Long-term dynamics of an Everglades small-fish assemblage. In Davis, S. M. & J. C. Ogden (eds), Everglades: The Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, FL: 461–483.

    Google Scholar 

  • McCormick, P. V. & J. E. Laing, 2003. Effects of increased phosphorus loading on dissolved oxygen in a subtropical wetland, the Florida Everglades. Wetlands Ecology and Management 11: 199–216.

    Article  CAS  Google Scholar 

  • McCormick, P. V., P. S. Rawlik, K. Lurding, E. P. Smith & F. H. Sklar, 1996. Periphyton-water quality relationships along a nutrient gradient in the northern Everglades. Journal of the North American Benthological Society 15: 433–449.

    Article  Google Scholar 

  • McCormick, P. V., R. B. E. Shuford III, J. G. Backus & W. C. Kennedy, 1998. Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, USA. Hydrobiologia 362: 185–208.

    Article  Google Scholar 

  • McCormick, P. V., M. B. O’Dell, R. B. E. Shuford, III, J. G. Backus & W. C. Kennedy, 2001. Periphyton response to experimental phosphorus enrichment in a subtropical wetland. Aquatic Botany 71: 119–139.

    Article  CAS  Google Scholar 

  • McCormick, P. V., S. Newman, S. L. Miao, D. Gawlik, D. Marley, K. R. Reddy & T. D. Fontaine, 2002. Effects of anthropogenic phosphorus inputs on the Everglades. In Porter, J. W. & K. G. Porter (eds), The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook. CRC Press, Boca Raton, Florida: 83–126.

    Google Scholar 

  • Neter, J., M. H. Kutner, C. J. Nachtsheim & W. Wasserman, 1996. Applied linear statistical models, 4th ed. Irwin, Inc., Chicago, IL.

    Google Scholar 

  • Newman, S., J. Schuette, J. B. Grace, K. Rutchey, T. Fontaine, K. R. Reddy & M. Pietrucha, 1998. Factors influencing cattail abundance in the northern Everglades. Aquatic Botany 60: 265–280.

    Article  Google Scholar 

  • Newman, S., P. V. McCormick, S. L. Miao, J. A. Laing, W. C. Kennedy & M. B. O’Dell, 2004. The effect of phosphorus enrichment on the nutrient status of a northern Everglades slough. Wetlands Ecology and Management 12: 63–79.

    Article  CAS  Google Scholar 

  • Newman, S., S. E. Hagerthey & M. I. Cook, 2006. Cattail Habitat Improvement Project [available online at http://my.sfwmd.gov/evergladeswatershed]. Accessed March 2008.

  • Niu, X-F., P-E. Lin & D. Meeter, 2000. Detecting Change Points in the Species Composition and Water Quality Data of WCA2A [available online at http://www.dep.state.fl.us/water/wqssp/nutrients/docs/TAC/tac9_EvergladesChangepointExample.pdf]. Accessed March 2008.

  • Ogden, J. C., 2005. Everglades ridge and slough conceptual ecological model. Wetlands 25: 810–820.

    Article  Google Scholar 

  • Rader, R. B., 1994. Macroinvertebrates of the northern Everglades: species composition and trophic structure. Florida Scientist 57: 22–33.

    Google Scholar 

  • Rader, R. B. & C. J. Richardson, 1994. Response of macroinvertebrates and small fish to nutrient enrichment in the northern Everglades. Wetlands 14: 134–146.

    Article  Google Scholar 

  • Rutchey, K. & L. Vilchek, 1999. Air photo interpretation and satellite imagery analysis techniques for mapping cattail coverage in a northern impoundment. Photogrammetric Engineering and Remote Sensing 65: 185–191.

    Google Scholar 

  • Rutchey, K., T. Schall & F. H. Sklar, 2008. Development of vegetation maps for assessing Everglades restoration progress. Wetlands 28: 806–816.

    Article  Google Scholar 

  • Science Coordination Team, 2003. The Role of Flow in the Everglades Ridge and Slough Landscape [available online at sofia.usgs.gov/publications/papers/sct_flows/]. Accessed December 2007.

  • Sklar, F. H., M. J. Chimney, S. Newman, P. V. McCormick, D. Gawlik, S. Miao, C. McVoy, W. Said, J. Newman, C. Coronado, G. Crozier, M. Korvela & K. Rutchey, 2005. The ecological-societal underpinnings of Everglades restoration. Frontiers in Ecology and the Environment 3: 161–169.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry, 3rd ed. W.H. Freeman, New York.

    Google Scholar 

  • South Florida Ecosystem Restoration Task Force, 2000. Coordinating Success: Strategy for Restoration of the South Florida Ecosystem [available online at http://www.sfrestore.org/documents/isp/sfweb/sfindex.htm]. Accessed January 30, 2006.

  • Trexler, J. C., W. F. Loftus, F. Jordan, J. H. Chick, K. L. Kandl, T. C. McElroy & O. L. Bass Jr., 2002. Ecological scale and its implications for freshwater fishes in the Florida Everglades. In Porter, J. W. & K. G. Porter (eds), The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook. CRC Press, Boca Raton, FL: 153–181.

    Google Scholar 

  • Turner, A. M., J. C. Trexler, C. F. Jordan, S. J. Slack, P. Geddes, J. H. Chick & W. F. Loftus, 1999. Targeting ecosystem features for conservation: standing crops in the Florida Everglades. Conservation Biology 13: 898–911.

    Article  Google Scholar 

  • United State Environmental Protection Agency (USEPA), 1983. Methods for Chemical Analysis of Water and Wastes. USEPA, Cincinnati, OH.

    Google Scholar 

  • United State Environmental Protection Agency (USEPA), 1986. Test Methods for Evaluating Solid Waste, Physical and Chemical Methods. USEPA, Cincinnati, OH.

    Google Scholar 

  • Vaithiyanathan, P. & C. J. Richardson, 1999. Macrophyte species changes in Everglades: Examination along the eutrophication gradient. Journal of Environmental Quality 28: 1347–1358.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kirk Gallagher for assistance with photointerpretation and Michelle Rau and Chad Kennedy for assistance with field sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul V. McCormick.

Additional information

Handling editor: L. M. Bini

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCormick, P.V., Newman, S. & Vilchek, L.W. Landscape responses to wetland eutrophication: loss of slough habitat in the Florida Everglades, USA. Hydrobiologia 621, 105–114 (2009). https://doi.org/10.1007/s10750-008-9635-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9635-2

Keywords