Advertisement

Hydrobiologia

, Volume 620, Issue 1, pp 163–172 | Cite as

Spatio-temporal variability of intertidal benthic primary production and respiration in the western part of the Mont Saint-Michel Bay (Western English Channel, France)

  • D. Davoult
  • A. Migné
  • A. Créach
  • F. Gévaert
  • C. Hubas
  • N. Spilmont
  • G. Boucher
Primary research paper

Abstract

In situ measurements of both community metabolism (primary production and respiration) and PAM fluorometry were conducted during emersion on intertidal sediments in the Mont Saint-Michel Bay, in areas where oysters and mussels were cultivated. Results highlighted a low benthic metabolism compared to other intertidal areas previously investigated with the same methods. Comparisons between gross community primary production and relative electron transport rates confirmed this statement. More specifically, primary productivity remained very low all over the year, whereas the associated microalgal biomass was estimated to be high. We suggest that the microphytobenthic community studied was characterized by a self-limitation of its primary productivity by its own biomass, as previously shown in Marennes-Oléron Bay for example. The almost permanent high biomass would represent a limiting factor for micromigration processes within the first millimetres of the sediment. This could be explained by very low resuspension processes occurring in the western part of the bay, enhanced by the occurrence of numerous aquaculture structures that could decrease tidal currents in the benthic boundary layer.

Keywords

In situ measurements Microphytobenthos Intertidal community metabolism Benthic primary production Community respiration PAM fluorometry 

Notes

Acknowledgements

This work was supported by the French National Programme on Coastal Ecology (PNEC), chantier Baie du Mont Saint Michel. We thank “la Maison de la Baie” (not “de l’abbé”) for warm hospitality, and Hervé Rybarczyk and Renaud Michel for field assistance.

References

  1. Blanchard, M. & A. Ehrold, 1999. Cartographie et évaluation du stock de crépidules (Crepidula fornicata) en baie du Mont Saint Michel. Haliotis 28: 11–20.Google Scholar
  2. Blanchard, G. F. & J.-M. Guarini, 1998. Temperature effects on microphytobenthic productivity in temperate intertidal mudflat. Vie et Milieu 48: 271–284.Google Scholar
  3. Blanchard, G. F., J.-M. Guarini, P. Richard, P. Gros & F. Mornet, 1996. Quantifying the short-term temperature effect on light-saturated photosynthesis on intertidal microphytobenthos. Marine Ecology Progress Series 134: 309–313.CrossRefGoogle Scholar
  4. Blanchard, G. F., J.-M. Guarini, F. Orvain & P. G. Sauriau, 2001. Dynamic behaviour of benthic microalgal biomass in intertidal mudflats. Journal of Experimental Marine Biology and Ecology 264: 85–100.CrossRefGoogle Scholar
  5. Cayocca, F., P. Bassoullet, P. Le Hir, H. Jestin & P. Cann, 2008. Chapter 29. Sediment processes in a shellfish farming environment, Mont Saint Michel Bay, France. In Kusuda, T., H. Yamanishi, J. Spearman & J. Z. Gailani (eds), Sediment and Ecohydraulics: INTERCOH 2005. Elsevier, Amsterdam: 431–446.CrossRefGoogle Scholar
  6. Consalvey, M., B. Jesus, R. G. Perkins, V. Brotas, G. J. C. Underwood & D. M. Paterson, 2004. Monitoring migration and measuring biomass in benthic biofilms: the effects of dark/far-red adaptation and vertical migration on fluorescence measurements. Photosynthesis Research 81: 91–101.PubMedCrossRefGoogle Scholar
  7. Consalvey, M., R. G. Perkins, D. M. Paterson & G. J. C. Underwood, 2005. PAM fluorescence: a beginners guide for benthic diatomists. Diatom Research 20: 1–22.Google Scholar
  8. de Jonge, V. N. & J. J. E. van Beusekom, 1995. Wind- and tide-induced resuspension of sediment and microphytobenthos from tidal flats in the Ems estuary. Limnology and Oceanography 40: 766–778.Google Scholar
  9. Dimier, C., F. Corato, F. Tramontano & C. Brunet, 2007. Photoprotection and xanthophyll-cycle activity in three marine diatoms. Journal of Phycology 43: 937–947.CrossRefGoogle Scholar
  10. Forster, R. M. & J. C. Kromkamp, 2004. Modelling the effects of chlorophyll fluorescence from subsurface layers on photosynthetic efficiency measurements in microphytobenthic algae. Marine Ecology Progress series 284: 9–22.CrossRefGoogle Scholar
  11. Genty, B., J.-M. Briantais & N. R. Baker, 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990: 87–92.Google Scholar
  12. Gérard, D., 2003. Estimation du stock de moules sur bouchots dans la baie du Mont Saint-Michel. Rapport de Stage IUT informatique et statistiques Vannes. Rapport de laboratoire Ifremer DRV/RA/LCB/2002-001: 36 pp.Google Scholar
  13. Hancke, K. & R. N. Glud, 2004. Temperature effects on respiration and photosynthesis in three diatom-dominated benthic communities. Aquatic Microbial Ecology 37: 265–281.CrossRefGoogle Scholar
  14. Hubas, C., D. Davoult, T. Cariou & L. F. Artigas, 2006. Factors controlling benthic metabolism during low tide in an intertidal bay along a granulometric gradient (Roscoff Aber Bay, Western English Channel, France). Marine Ecology Progress Series 316: 53–68.CrossRefGoogle Scholar
  15. Kromkamp, J., C. Barranguet & J. Peene, 1998. Determination of microphotobenthos PSII quantum efficiency and photosynthetic activity by means of variable chlorophyll fluorescence. Marine Ecology Progress Series 162: 45–55.CrossRefGoogle Scholar
  16. Lorenzen, C. J., 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.CrossRefGoogle Scholar
  17. Mazurié, J. & J. F. Bouget, 2003. Estimation du stock d’huîtres creuses Crassostrea gigas, en élevage en Baie de Cancale en octobre 2002. Rapport de laboratoire Ifremer: 29 pp.Google Scholar
  18. Méléder, V., L. Barillé, Y. Rincé, M. Morançais, P. Rosa & P. Gaudin, 2005. Spatio-temporal changes in microphytobenthos structure analysed by pigment composition in a macrotidal flat (Bourgneuf Bay, France). Marine Ecology Progress Series 297: 83–99.CrossRefGoogle Scholar
  19. Méziane, T., L. Bodineau, C. Retière & G. Thoumelin, 1997. The use of lipid markers to define sources of organic matter in sediment and food web of the intertidal salt-marsh-flat ecosystem of Mont-Saint-Michel Bay, France. Journal of Sea Research 38: 47–58.CrossRefGoogle Scholar
  20. Migné, A., D. Davoult, N. Spilmont, D. Menu, G. Boucher, J.-P. Gattuso & H. Rybarczyk, 2002. A closed-chamber CO2 flux method for estimating primary production and respiration in emersed conditions. Marine Biology 140: 865–869.CrossRefGoogle Scholar
  21. Migné, A., N. Spilmont & D. Davoult, 2004. In situ measurements of benthic primary production during emersion: seasonal variations and annual production in the Bay of Somme (eastern English Channel, France). Continental Shelf Research 24: 1437–1449.CrossRefGoogle Scholar
  22. Migné, A., F. Gevaert, A. Creach, N. Spilmont, E. Chevalier & D. Davoult, 2007. Photosynthetic activity of intertidal microphytobenthic communities during emersion: in situ measurements of chlorophyll fluorescence (PAM) and CO2-flux (IRGA). Journal of Phycology 43: 864–873.CrossRefGoogle Scholar
  23. Montani, S., P. Magni & N. Abe, 2003. Seasonal and interannual patterns of intertidal microphytobenthos in combination with laboratory and areal production estimates. Marine Ecology Progress Series 249: 79–91.CrossRefGoogle Scholar
  24. Morelissen, B. & C. D. G. Harley, 2007. The effect of temperature on producers, consumers, and plant-herbivore interactions in an intertidal community. Journal of Experimental Marine Biology and Ecology 348: 162–173.CrossRefGoogle Scholar
  25. Orvain, F., P.-G. Sauriau, C. Bacher & M. Prineau, 2006. The influence of sediment cohesiveness on biotirbation effects due to Hydrobia ulvae on the initial erosion of intertidal sediments: a study combining flume and model approaches. Journal of Sea Research 55: 54–73.CrossRefGoogle Scholar
  26. Parsons, T. R., M. Takahashi & B. Hargrave, 1984. Biological Oceanographic Processes, 3rd edn. Pergamon Press Ltd, Oxford: 330 pp.Google Scholar
  27. Peletier, H., 1996. Long-term changes in intertidal estuarine diatom assemblages related to reduced input of organic waste. Marine Ecology Progress Series 137: 265–271.CrossRefGoogle Scholar
  28. Perissinoto, R., C. Nozais & I. Kibirige, 2002. Spatio-temporal dynamics of phytoplankton and microphytobenthos in a South African temporarily-open estuary. Estuarine Coastal and Shelf Science 55: 47–58.CrossRefGoogle Scholar
  29. Perkins, R. G., C. Honeywill, M. Consalvey, H. A. Austin, T. J. Tolhurst & D. M. Paterson, 2003. Changes in microphytobenthic chlorophyll a and EPS resulting from sediment compaction due to de-watering: opposing patterns in concentration and content. Continental Shelf Research 23: 575–586.CrossRefGoogle Scholar
  30. Pinckney, J. L., K. R. Carman, S. E. Lumsden & S. N. Hymel, 2003. Microalgal-meiofaunal trophic relationships in muddy intertidal estuarine sediments. Aquatic Microbial Ecology 31: 99–108.CrossRefGoogle Scholar
  31. Riera, P., 1998. δ15N of organic matter sources and benthic invertebrates along an estuarine gradient in Marennes-Oléron Bay (France): implications for the study of the trophic structure. Marine Ecology Progress Series 166: 143–150.CrossRefGoogle Scholar
  32. Riera, P., 2007. Trophic subsidies of Crassostrea gigas, Mytilus edulis and Crepidula fornicata in the Bay of Mont Saint Michel (France): a δ13C and δ15N investigation. Estuarine, Coastal and Shelf Science 72: 33–41.CrossRefGoogle Scholar
  33. Riera, P. & P. Richard, 1996. Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Oléron. Estuarine, Coastal and Shelf Science 42: 347–360.CrossRefGoogle Scholar
  34. Riera, P., P. Richard, A. Grémare & G. Blanchard, 1996. Food source of intertidal nematodes in the Bay of Marennes-Oléron (France), as determined by dual stable isotopes analysis. Marine Ecology Progress Series 142: 303–309.CrossRefGoogle Scholar
  35. Salomon, J.-C. & M. Breton, 2000. Mathematical model of Mont Saint-Michel Bay. In Lefeuvre, J.-C. & E. Feunteun (eds), European Salt Marshes Modelling. European Commission, Work program PL 970655, Final Report, Rennes: 475–530.Google Scholar
  36. Serôdio, J., S. Vieira, S. Cruz & F. Barroso, 2005. Short-term variability in the photosynthetic activity of microphytobenthos as detected by measuring rapid light curves using variable fluorescence. Marine Biology 146: 903–914.CrossRefGoogle Scholar
  37. Spilmont, N., A. Migné, A. Lefebvre, L. F. Artigas, M. Rauch & D. Davoult, 2005. Temporal variability of intertidal benthic metabolism under emersed conditions in an exposed sandy beach (Wimereux, eastern English Channel, France). Journal of Sea Research 53: 161–167.CrossRefGoogle Scholar
  38. Spilmont, N., D. Davoult & A. Migné, 2006. Benthic primary production during emersion: in situ measurements and potential primary production in the Seine Estuary (English Channel, France). Marine Pollution Bulletin 53: 49–55.PubMedCrossRefGoogle Scholar
  39. Thorin, S., A. Radureau, E. Feunteun & J.-C. Lefeuvre, 2001. Preliminary results on a high east-west gradient in the macrozoobenthic community structure of the macrotidal Mont Saint-Michel bay. Continental Shelf Research 21: 2167–2183.CrossRefGoogle Scholar
  40. Thornton, D. C. O., L. F. Dong, J. C. Underwood & D. B. Nedwell, 2002. Factors affecting microphytobenthic biomass, species composition and production in the Colne Estuary (UK). Aquatic Microbial Ecology 27: 285–300.CrossRefGoogle Scholar
  41. Van Leewe, M. A., V. Brotas, M. Consalvey, M. R. Forster, D. Gillespie, B. Jesus, J. Roggeveld & W. W. C. Gieskes, 2008. Photoacclimation in microphytobenthos and the role of the xanthophyll pigments. European Journal of Phycology 43: 123–132.CrossRefGoogle Scholar
  42. Webb, W. L., M. Newton & D. Starr, 1974. Carbon dioxide exchange of Abrus rubra: a mathematical model. Oecologia 17: 281–291.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • D. Davoult
    • 1
    • 2
  • A. Migné
    • 1
    • 3
  • A. Créach
    • 4
  • F. Gévaert
    • 5
  • C. Hubas
    • 1
    • 6
  • N. Spilmont
    • 5
    • 6
  • G. Boucher
    • 3
  1. 1.UPMC Univ Paris 6, UMR CNRS 7144 AD2M, Station Biologique de RoscoffRoscoff CedexFrance
  2. 2.CNRS, UMR 7144 AD2M, Station Biologique de RoscoffRoscoff CedexFrance
  3. 3.Muséum National d’Histoire Naturelle, UMR CNRS 5178 BOMEParis Cedex 5France
  4. 4.Université des Sciences et Technologies de Lille 1, UMR CNRS 8016, GEPV, Bat SN2Villeneuve d’Ascq CedexFrance
  5. 5.Université des Sciences et Technologies de Lille I, UMR CNRS 8187 LOG, Station Marine de WimereuxWimereuxFrance
  6. 6.Université du Littoral Côte d’Opale, UMR CNRS 8187 LOG, Maison de la Recherche en Environnement NaturelWimereuxFrance

Personalised recommendations