Skip to main content
Log in

The potential importance of podocysts to the formation of scyphozoan blooms: a review

  • JELLYFISH BLOOMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Podocysts are cysts with stored reserves of organic compounds produced beneath the pedal discs of polyps of scyphozoans in the orders Rhizostomae (suborder Dactyliophorae) and Semaeostomae. They excyst small polyps that develop into fully active polyps (scyphistomae) capable of further podocyst production and of medusa production by strobilation. They contribute to increasing the number of polyps and also to survival through seasonal periods of reduced food availability or predation. These attributes may help support scyphozoan blooms, but as yet there are few quantitative data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arai, M. N., 1997. A Functional Biology of Scyphozoa. Chapman & Hall, New York: 316 pp.

    Google Scholar 

  • Black, R. E., 1981. Metabolism and ultrastructure of dormant podocysts of Chrysaora quinquecirrha (Scyphozoa). Journal of Experimental Zoology 218: 175–182.

    Article  CAS  Google Scholar 

  • Black, R. E., R. T. Enright & L.-P. Sung, 1976. Activation of the dormant podocyst of Chrysaora quinquecirrha (Scyphozoa) by removal of the cyst covering. Journal of Experimental Zoology 197: 403–413.

    Article  CAS  Google Scholar 

  • Blanquet, R. S., 1972a. Temperature acclimation in the medusa, Chrysaora quinquecirrha. Comparative Biochemistry and Physiology 43B: 717–723.

    Google Scholar 

  • Blanquet, R. S., 1972b. Structural and chemical aspects of the podocyst cuticle of the scyphozoan medusa, Chrysaora quinquecirrha. Biological Bulletin 142: 1–10.

    Article  CAS  Google Scholar 

  • Brewer, R. H. & J. S. Feingold, 1991. The effect of temperature on the benthic stages of Cyanea (Cnidaria: Scyphozoa), and their seasonal distribution in the Niantic River estuary, Connecticut. Journal of Experimental Marine Biology and Ecology 152: 49–60.

    Article  Google Scholar 

  • Calder, D. R., 1973. Laboratory observations on the life history of Rhopilema verrilli (Scyphozoa: Rhizostomeae). Marine Biology 21: 109–114.

    Article  Google Scholar 

  • Calder, D. R., 1982. Life history of the cannonball jellyfish, Stomolophus meleagris L. Agassiz, 1860 (Scyphozoa, Rhizostomida). Biological Bulletin 162: 149–162.

    Article  Google Scholar 

  • Cargo, D. G., 1971. The sessile stages of a scyphozoan identified as Rhopilema verrilli. Tulane Studies in Zoology and Botany 17: 31–34.

    Google Scholar 

  • Cargo, D. G., 1974. Comments on the laboratory culture of Scyphozoa. In Smith, W. L. & M. H. Chanley (eds), Culture of Marine Invertebrate Animals. Plenum Publishing Corporation, New York: 145–154.

    Google Scholar 

  • Cargo, D. G. & J. W. Burnett, 1982. Observations on the ultrastructure and defensive behavior of the cnidosac of Cratena pilata. Veliger 24: 325–327.

    Google Scholar 

  • Cargo, D. G. & G. E. Rabenold, 1980. Observations on the asexual reproductive activities of the sessile stages of the sea nettle Chrysaora quinquecirrha (scyphozoan). Estuaries 3(1): 20–27.

    Article  Google Scholar 

  • Cargo, D. G. & L. P. Schultz, 1966. Notes on the biology of the sea nettle, Chrysaora quinquecirrha, in Chesapeake Bay. Chesapeake Science 7: 95–100.

    Article  Google Scholar 

  • Cargo, D. G. & L. P. Schultz, 1967. Further observations on the biology of the sea nettle and jellyfishes in Chesapeake Bay. Chesapeake Science 8: 209–220.

    Article  Google Scholar 

  • Chapman, D. M., 1966. Evolution of the scyphistoma. Symposia of the Zoological Society of London 16: 51–75.

    Google Scholar 

  • Chapman, D. M., 1968. Structure, histochemistry and formation of the podocyst and cuticle of Aurelia aurita. Journal of the Marine Biological Association of the United Kingdom 48: 187–208.

    Google Scholar 

  • Chapman, D. M., 1970. Further observations on podocyst formation. Journal of the Marine Biological Association of the United Kingdom 50: 107–111.

    Article  Google Scholar 

  • Chuin, T.-T., 1930. Le cycle évolutif du scyphistome de Chrysaora. Travaux de la Station Biologique de Roscoff 8: 1–174.

    Google Scholar 

  • Condon, R. H., M. B. Decker & J. E. Purcell, 2001. Effects of low dissolved oxygen on survival and asexual reproduction of scyphozoan polyps (Chrysaora quinquecirrha). Hydrobiologia 451(Developments in Hydrobiology 155): 89–95.

    Article  Google Scholar 

  • Ding, G. & J. Chen, 1981. The life history of Rhopilema esculenta Kishinouye. Journal of Fisheries of China 5: 93–102. Pl. 1–2 (Chinese with English abstract).

    Google Scholar 

  • Dong, J., C.-Y. Liu, Y.-Q. Wang & B. Wang, 2006. Laboratory observations on the life cycle of Cyanea nozakii (Semaeostomida, Scyphozoa). Acta Zoologica Sinica 52: 389–395.

    Google Scholar 

  • Gershwin, L.-A. & A. G. Collins, 2002. A preliminary phylogeny of Pelagiidae (Cnidaria, Scyphozoa), with new observations of Chrysaora colorata comb. nov. Journal of Natural History 36: 127–148.

    Article  Google Scholar 

  • Gröndahl, F., 1988. A comparative ecological study on the scyphozoans Aurelia aurita, Cyanea capillata and C. lamarckii in the Gullmar Fjord, western Sweden, 1982 to 1986. Marine Biology 97: 541–550.

    Article  Google Scholar 

  • Gröndahl, F. & L. Hernroth, 1987. Release and growth of Cyanea capillata (L.) ephyrae in the Gullmar Fjord, western Sweden. Journal of Experimental Marine Biology and Ecology 106: 91–101.

    Article  Google Scholar 

  • Guo, P., 1990. Effect of nutritional condition on the formation and germination of the podocyst of scyphistomae of Rhopilema esculenta Kishinouye. Journal of Fisheries of China 14: 206–211. (Chinese with English abstract).

    Google Scholar 

  • Hamner, W. M. & M. N. Dawson, 2008. A review and synthesis on the systematics and evolution of jellyfish blooms: advantageous aggregations and adaptive assemblages. Hydrobiologia. doi:10.1007/s10750-008-9620-9.

    Google Scholar 

  • Hernroth, L. & F. Gröndahl, 1985. On the biology of Aurelia aurita (L.): 2. Major factors regulating the occurrence of ephyrae and young medusae in the Gullmar Fjord, western Sweden. Bulletin of Marine Science 37: 567–576.

    Google Scholar 

  • Holst, S., I. Sötje, H. Tiemann & G. Jarms, 2007. Life cycle of the rhizostome jellyfish Rhizostoma octopus (L.) (Scyphozoa, Rhizostomeae), with studies on cnidocysts and statoliths. Marine Biology 151: 1695–1710.

    Article  Google Scholar 

  • Jiang, S., N. Lu & J. Chen, 1993. Effect of temperature, salinity and light on the germination of the podocyst of Rhopilema esculenta. Fisheries Science (Tokyo) 12: 1–4. (Japanese with English abstract).

    Google Scholar 

  • Kakinuma, Y., 1967. Development of a scyphozoan, Dactylometra pacifica Goette. Bulletin of the Marine Biological Station of Asamushi 13: 29–33. pl. 1–3.

    Google Scholar 

  • Kawahara, M., S.-I. Uye, K. Ohtsu & H. Iizumi, 2006. Unusual population explosion of the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) in East Asian waters. Marine Ecology Progress Series 307: 161–173.

    Article  Google Scholar 

  • Kühl, H., 1972. Hydrography and biology of the Elbe estuary. Oceanography and Marine Biology an Annual Review 10: 225–309.

    Google Scholar 

  • Littleford, R. A., 1939. The life cycle of Dactylometra quinquecirrha, L. Agassiz in the Chesapeake Bay. Biological Bulletin 77: 368–381.

    Article  Google Scholar 

  • Lotan, A., R. Ben-Hillel & Y. Loya, 1992. Life cycle of Rhopilema nomadica: a new immigrant scyphomedusan in the Mediterranean. Marine Biology 112: 237–242.

    Article  Google Scholar 

  • Lu, N., S. Jiang & J. Chen, 1997. Effect of temperature, salinity and light on the podocyst generation of Rhopilema esculenta Kishnouye. Fisheries Science 16: 3–8. (Chinese with English abstract).

    Google Scholar 

  • Magnusen, J. E., 1980. Epidermal cell movement during podocyst formation in Chrysaora quinquecirrha. In Tardent, P. & R. Tardent (eds), Developmental and Cellular Biology of Coelenterates. Elsevier/North Holland Biomedical Press, Amsterdam: 435–440.

    Google Scholar 

  • Morandini, A. C., F. L. da Siveira & G. Jarms, 2004. The life cycle of Chrysaora lactea Eschscholtz, 1829 (Cnidaria, Scyphozoa) with notes on the scyphistoma stage of three other species. Hydrobiologia 530(531): 347–354.

    Google Scholar 

  • Oakes, M. J. & D. S. Haven, 1971. Some predators of polyps of Chrysaora quinquecirrha (Scyphozoa, Semaeostmae) in the Chesapeake Bay. Virginia Journal of Science 22: 45–46.

    Google Scholar 

  • Östman, C., 1997. Abundance, feeding behavior and nematocysts of scyphopolyps (Cnidaria) and nematocysts in their predator, the nudibranch Coryphella verrucosa (Mollusca). Hydrobiologia 355: 21–28.

    Article  Google Scholar 

  • Paspaleff, G. W., 1938. Über die Entwicklung von Rhizostoma pulmo Agass. Arbeiten aus der Biologischen Meeresstation am Schwarzen Meer in Varna 7: 1–25.

    Google Scholar 

  • Pitt, K. A., 2000. Life history and settlement preferences of the edible jellyfish Catostylus mosaicus (Scyphozoa: Rhizostomeae). Marine Biology 136: 269–279.

    Article  Google Scholar 

  • Purcell, J. E., 2007. Environmental effects on asexual reproduction rates of the scyphozoan Aurelia labiata. Marine Ecology Progress Series 348: 183–196.

    Article  Google Scholar 

  • Purcell, J. E., S.-I. Uye & W.-T. Lo, 2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Marine Ecology Progress Series 350: 153–174.

    Article  Google Scholar 

  • Schaadt, M., L. Yasukochi, L. Gershwin & D. Wrobel, 2001. Husbandry of the black jelly (Chrysaora achlyos), a newly discovered scyphozoan in the eastern North Pacific Ocean. Bulletin de l’Institut Océanographique Monaco 20: 289–296.

    Google Scholar 

  • Truitt, R. V., 1939. Stoloniferous, pedal disc and somatic budding in the common sea nettle, Dactylometra quinquecirrha, L. Asassiz. Bulletin of the Natural History Society Maryland 9: 38–39.

    Google Scholar 

  • Widersten, B., 1969. Development of the periderm and podocysts in Cyanea palmstruchi Swartz 1809. Zoologiska Bidrag fran Uppsala 38: 51–60.

    Google Scholar 

  • Widmer, C. L., 2006. Life cycle of Phacellophora camtschatica (Cnidaria: Scyphozoa). Invertebrate Biology 125: 83–90.

    Article  Google Scholar 

  • Widmer, C. L., 2008. Life cycle of Chrysaora fuscescens (Cnidaria: Scyphozoa) and a key to sympatric ephyrae. Pacific Science 62: 71–82.

    Article  Google Scholar 

  • You, K., C. Ma, H. Gao, F. Li, M. Zhang, Y. Qiu & B. Wang, 2007. Research on the jellyfish (Rhopilema esculentum Kishinouye) and associated aquaculture techniques in China: current status. Aquaculture International 15: 479–488.

    Article  Google Scholar 

Download references

Acknowledgment

I thank D. Welch for help in translating portions of Chinese papers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Needler Arai.

Additional information

Guest editors: K. A. Pitt & J. E. Purcell

Jellyfish Blooms: Causes, Consequences, and Recent Advances

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arai, M.N. The potential importance of podocysts to the formation of scyphozoan blooms: a review. Hydrobiologia 616, 241–246 (2009). https://doi.org/10.1007/s10750-008-9588-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9588-5

Keywords

Navigation