, 615:103 | Cite as

Ancient Lake Ohrid: biodiversity and evolution

  • Christian Albrecht
  • Thomas Wilke


Worldwide ancient lakes have been a major focal point of geological, biological, and ecological research, and key concepts in, for example, evolutionary biology are partly based on ancient lake studies. Ancient lakes can be found on most continents and climate zones with most actual or putative ancient lakes in Europe being restricted to the Balkan Region. The arguably most outstanding of them is the oligotrophic and karstic Lake Ohrid, a steep-sided graben of rift formation origin situated in the central Balkans. Here, an attempt is made to summarize current knowledge of the geological, limnological, and faunal history of Lake Ohrid. Additionally, existing data on biodiversity and endemism in Lake Ohrid are updated and evaluated, and patterns and processes of speciation are reviewed in the context of the Ohrid watershed, including its sister lake, Lake Prespa. Whereas the geological history of the Ohrid Graben is relatively well studied, there is little knowledge about the limnological and biotic history of the actual lake (e.g., the age of the extant lake or from where the lake first received its water, along with its first biota). Most workers agree on a time frame of origin for Lake Ohrid of 2–5 million years ago (Mya). However, until now, the exact limnological origin and the origin of faunal or floral elements of Lake Ohrid remain uncertain. Two largely contrasting opinions either favour the theory of de novo formation of Lake Ohrid in a dry polje with a spring or river hydrography or a palaeogeographical connection of Lake Ohrid to brackish waters on the Balkan Peninsula. Whereas neither theory can be rejected at this point, the data summarized in the current review support the de novo hypothesis. An assessment of the fauna and flora of Lake Ohrid confirms that the lake harbours an incredible endemic biodiversity. Despite the fact that some biotic groups are poorly studied or not studied at all, approximately 1,200 native species are known from the lake, including 586 animals, and at least 212 species are endemic, including 182 animals. The adjusted rate of endemicity is estimated at 36% for all taxa and 34% for Animalia. In terms of endemic biodiversity, Lake Ohrid is with these 212 known endemic species and a surface area of 358 km2 probably the most diverse lake in the world, taking surface area into account. Preliminary phylogeographical analyses of endemic Lake Ohrid taxa indicate that the vast majority of respective sister taxa occurs in the Balkans and that therefore the most recent common ancestors of Ohrid- and non-Ohrid species likely resided in the region when Lake Ohrid came into existence. These data also indicate that there is relatively little faunal exchange and overlap between Lake Ohrid and its sister lake, Lake Prespa, despite the fact that the latter lake is a major water supplier for Lake Ohrid. Studies on selected species flocks and scatters, mostly in molluscs, point towards the assumption that only few lineages originally colonized Lake Ohrid from the Balkans and that the majority of endemic species seen today probably started to evolve within the lake during the early Pleistocene. Within the Ohrid watershed, endemism occurs at different spatial and taxonomic scales, ranging from species endemic to certain parts of Lake Ohrid to species endemic to the whole watershed and from subspecies to genus level and possibly beyond. Modes of speciation in the Ohrid watershed are largely affected by its degree of isolation. Observational evidence points towards both allopatric (peripatric) and parapatric speciation. Though sympatric speciation within a habitat is conceivable, so far there are no known examples. Today, the lake suffers from increasing anthropogenic pressure and a “creeping biodiversity crisis”. Some endemic species presumably have already gone extinct, and there are also indications of invasive species penetrating Lake Ohrid. The comparatively small size of Lake Ohrid and the extremely small range of many endemic species, together with increasing human pressure make its fauna particularly vulnerable. It is thus hoped that this review will encourage future research on the ecology and evolutionary biology of the lake’s taxa, the knowledge of which would ultimately help protecting this unique European biodiversity hot spot.


Ancient lake Lake Ohrid Lake Prespa Balkans Sister lakes Geology Limnology Biodiversity Endemism Speciation 



We are extremely grateful to our colleagues from the Hydrobiological Institute Ohrid (HBI) for their immense support and hospitality and for encouraging our work. Without the continuous help from our dear friends, particularly from the institutes’ director, Goce Kostoski, and the benthos expert, Sasho Trajanovski, our work would have been impossible. Sonja Trajanovska, Biljana Budzakoska, and Bruno Streit took part in some field trips and/or provided valuable logistic support. Dimce Georgiev was always a very experienced scout and Zoran Brdarovski a safe skipper of the HBI research vessel. Both also helped a lot with sampling. Over the years, many graduate students took part in field trips, contributed to sampling efforts, and generated valuable data. They are gratefully acknowledged here. Kirstin Schreiber digitized the maps shown in Fig. 6; Anne-Kathrin Hauswald provided the photographs of Valvata spp. shown in Fig. 8; and Andreas Kubicek took the two underwater photographs shown in Fig. 11. We thank Mathias Harzhauser, Oleg Mandic, Andreas Matzinger, Sebastian Krastel, Jerzy Sell, and Bernd Wagner for valuable comments on an earlier version of the manuscript and for the fruitful discussions on Lake Ohrid issues. We are also very grateful to Thomas von Rintelen and Matthias Glaubrecht for reviewing the manuscript. Our work has been greatly inspired by the outstanding scientific contributions of the world authority on the evolution of Lake Ohrid—Sinisa Stankovic (1892–1974).


Allopatric speciation

Evolution of reproductive barriers in populations that are prevented from exchanging genes at more than a negligible rate by a geographic barrier (Futyuma, 2005).


Directional evolutionary change of various characteristics within a lineage (Futyuma, 2005).

Ancient lake

Extant lake that has existed since before the last glacial maximum. There is controversy as to the minimum age of an ancient lake. Whereas Gorthner (1994) proposed an age of at least 0.1 My, other workers suggest a considerably older minimum age.

Ancient sister lake

Ancient sister lakes are ancient lakes lying in close geographic proximity, sharing a related origin and significant time of co-existence, usually having hydrological connection as well as a balanced degree of faunal overlap and distinctness (Albrecht et al., 2008).


A formation, group of formations, or part of a formation that contains sufficient saturated permeable material yielding water to wells and springs (Field, 2002).


Branching of a lineage into two or more descendant lines (Futyuma, 2005).


Similarities which have arisen independently in two or more organisms that do not share a common ancestry.


Pertaining to a taxon that is restricted to the geographic area specified (Lomolino et al., 2006).


Within a lake.


A terrane, generally underlain by limestone or dolomite, in which the topography is chiefly formed by the dissolving of rock and which may be characterized by sinkholes, sinking streams, closed depressions, subterranean drainages, and caves (Field, 2002).

Lake proper

Actual continuous lake body excluding peripheral water bodies or effluents/affluents.

Long-lived lake

A lake of long existence that can be extant (ancient lake) or fossil (palaeolake) (Gorthner, 1994; Martens, 1997).


A fossil ancient lake that existed in the past when hydrological conditions were different (Cohen, 2003).

Parapatric speciation

Divergence of neighbouring populations, between which there is modest gene flow, with subsequent reproductive isolation (Futyuma, 2005).

Peripatric speciation

Divergence of a small population from a widely distributed ancestral form (Futyuma, 2005).


A large, flat floored depression in karst limestone (Slavic polje: field) whose long axis is developed parallel to major structural trends (Field, 2002).


Hole or opening (Slavic ponor: swallow hole) in the bottom or side of a depression where a surface stream or lake flows either partially or completely underground into the karst groundwater system (Field, 2002).


The term “proto-lake” is sometimes used synonymously with the term “palaeolake”. Here, the term is used in association with pre-lake settings.


Event of rapid cladogeneses.


Surviving taxon of a previous geological period or of ancient faunas and floras, whose close relatives have disappeared (e.g., Stankovic, 1960).

Short-lived lake

Mostly post-glacial lakes that go through a normal cycle of lake succession (see also ancient or long-lived lake).


Evolutionary process leading to new species.

Species flock

In ancient lakes, monophyletic group of at least three species that are endemic to the lake but which may include taxa that today occur outside the lake (Greenwood, 1984; Schön & Martens, 2004).

Species scatter

A group of closely related taxa that are characterized by the criteria speciosity and endemicity but which do not represent a monophyletic entity (Hauswald et al., 2008).

Sympatric speciation

Evolution of reproductive barriers within a single, initially randomly mating population (Futyuma, 2005).


Marine-like (Greek thalassa: sea). It refers to taxa that resemble marine taxa without necessarily having a marine origin. In ancient lake research, the term “thalassoid” is most often used to describe morphological or structural features of shells and other external body parts that are usually known from marine taxa (i.e., ribs, spines).


Catchment area of a drainage basin.


  1. Albrecht, C., R. Schultheiß & D. Lohfink, 2006a. Dramatic decline and loss of mollusc diversity in long-lived lakes in Greece. Tentacle 14: 11–13.Google Scholar
  2. Albrecht, C., R. Schultheiß, T. Kevrekidis, B. Streit & T. Wilke, 2007. Invaders or endemics? Molecular phylogenetics, biogeography and systematics of Dreissena in the Balkans. Freshwater Biology 52: 1525–1536.Google Scholar
  3. Albrecht, C., S. Trajanovski, K. Kuhn, B. Streit & T. Wilke, 2006b. Rapid evolution of an ancient lake species flock: Freshwater limpets (Gastropoda: Ancylidae) in the Balkan lake Ohrid. Organisms Diversity & Evolution 6: 294–307.Google Scholar
  4. Albrecht, C., C. Wolff, P. Glöer & T. Wilke, 2008. Concurrent evolution of ancient sister lakes and sister species. The freshwater gastropod genus Radix in lakes Ohrid and Prespa. Hydrobiologia (this volume).Google Scholar
  5. Aliaj, S., G. Baldassarre & D. Shkupi, 2001. Quaternary subsidence zones in Albania: Some case studies. Bulletin of Engineering Geology and the Environment 59: 313–318.Google Scholar
  6. Amataj, S., T. Anovski, R. Benischke, R. Eftimi, L. Gourcy, L. Kola, I. Leontiadis, E. Micevski, A. Stamos & J. Zoto, 2007. Tracer methods used to verify the hypothesis of Cvijic about the underground connection between Prespa and Ohrid Lake. Environmental Geology 51: 749–753.Google Scholar
  7. An der Lan, H., 1939. Zur rhabdocoelen Turbellarienfauna des Ochrida-Sees (Balkan). Aus den Sitzungsberichten der Akademie der Wissenschaften in Wien: Mathematisch Naturwissenschaftliche Klasse. Abteilung I 148: 195–254.Google Scholar
  8. Angelovski, P. & J. Sapkarev, 1991. Contribution to the knowledge of taxonomy and ecology of the larvae of chironomid fauna (Diptera: Chironomidae) of Lake Ohrid. Godishen Zbornik Biologija Prirodno-Matematichki Fakultet na Univerzitetot Kiril i Metodij Skopje 43(44): 35–49.Google Scholar
  9. Anovski, T., J. Naumovski, D. Kacurkov & P. Kirkov, 1980. A study of the origin of waters of St. Naum Springs, Lake Ohrid (in Macedonian). Fisika 12: 76–86.Google Scholar
  10. Arndt, W., 1923. Balkanspongilliden. Mit einer Bemerkung über ungarische und chinesische Kolonien von Spongilla carteri Carter. Zoologischer Anzeiger 56: 74–81.Google Scholar
  11. Arndt, W., 1937. Ochridaspongia rotunda n.g. n.sp., ein neuer Süßwasserschwamm aus dem Ochridasee. Archiv für Hydrobiologie 31: 636–677.Google Scholar
  12. Arndt, W., 1938. Spongiologische Untersuchungen am Ochridasee. Archiv für Hydrobiologie 34: 48–80.Google Scholar
  13. Augener, H., 1925. Blutegel von der Balkanhalbinsel. Zoologischer Anzeiger 62: 161–211.Google Scholar
  14. Augener, H., 1926. Nachtrag zur Blutegelfauna der Balkanhalbinsel nebst Bemerkungen über Egel aus anderen Gebieten. Zoologischer Anzeiger 68: 229–247.Google Scholar
  15. Augener, H., 1937. Hirudineen aus jugoslavischen Seen. Festschrift zum 60. Geburtstag vom Embrik Strand 2: 403–413.Google Scholar
  16. Baker, R. A., R. Gerecke, V. M. Pesic, S. Stojanovski & N. Hristovski, 2007. A comparative analysis of the water mite fauna of three transboundary lakes in the Balkans. 1st International Symposium for Protection of the Natural Lakes in Republic of Macedonia: 176–182.Google Scholar
  17. Banarescu, P. M., 1991. Zoogeography of Fresh Waters, Vol. 2: Distribution and Dispersal of Freshwater Animals in North America and Eurasia. Aula Verlag, Wiesbaden.Google Scholar
  18. Banarescu, P. M., 2004. Distribution patterns of the aquatic fauna of the Balkan Peninsula. In Griffith, H. I., et al. (eds), Balkan biodiversity. Kluwer Academic Publishers, Dordrecht, Boston, London: 243–260.Google Scholar
  19. Berger, J. & M. Schagerl, 2003. Allelopathic activity of Chara aspera. Hydrobiologia 501: 109–115.Google Scholar
  20. Blazencic, J., 2004. The Ohrid Lake—An important centre of Charophyta diversity. 2nd Congress of Ecologist of the Republic of Macedonia with International Participation, Ohrid: 378–383.Google Scholar
  21. Blazencic, J., B. Stevanovic, Z. Blazencic & V. Stevanovic, 2006. Red data list of charophytes in the Balkans. Biodiversity and Conservation 15: 3445–3457.Google Scholar
  22. Bolnick, D. H. & B. M. Fitzpatrick, 2007. Sympatric speciation: Models and empirical evidence. Annual Review of Ecology, Evolution and Systematics 38: 459–487.Google Scholar
  23. Boss, K. J., 1978. On the evolution of gastropods in ancient lakes. In Fretter, V. & J. Peake (eds), Pulmonates, Vol. 2a: Systematics, Evolution and Ecology. Academic Press, London, New York, San Francisco: 385–428.Google Scholar
  24. Bourcart, J., 1922. Les confins albanais administrés par la France. Revue de Geographie 10: 1–307.Google Scholar
  25. Brooks, J. L., 1950. Speciation in ancient lakes. Quarterly Review of Biology 25(30–60): 131–176.PubMedGoogle Scholar
  26. Brusina, S., 1896. Bemerkungen über macedonische Süsswasser-Mollusken. Annalen des kaiserlich-königlichen Naturhistorischen Hofmuseums Wien 3: 365–370.Google Scholar
  27. Bunje, P. M. E., M. Barluenga & A. Meyer, 2007. Sampling genetic diversity in the sympatrically and allopatrically speciating Midas cichlid species complex over a 16 year time series. BMC Evolutionary Biology 7: 25.PubMedGoogle Scholar
  28. Cado, I., 1978. Littoral zone of Lake Ohrid and its microphytic vegetation. Verhandlungen der Internationalen Vereinigung für Limnologie 20: 1085–1089.Google Scholar
  29. Cohen, A. S., 2003. Paleolimnology. History and Evolution of Lake Systems. Oxford University Press, Oxford.Google Scholar
  30. Coulter, G. W., 1994. Lake Tanganyika. In Martens, K., B. Goddeeris & G. W. Coulter (eds), Speciation in Ancient Lakes, Vol. 44. Archiv für Hydrobiologie Special Issues Advances in Limnology: 13–18.Google Scholar
  31. Coulter, G., V. Langenberg, R. Lowe-McConnell, F. Riedel, F. Roest, J. Sarvala & O. Timoshkin, 2006. Survival of Ancient Lake Biodiversity. International Association of Theoretical & Applied Limnology 29: 1178–1181.Google Scholar
  32. Coyne, J. A., 2007. Sympatric speciation. Current Biology 17: R787–R788.PubMedGoogle Scholar
  33. Coyne, J. A. & H. A. Orr, 2004. Speciation. Sinauer Associates, Sunderland, MA.Google Scholar
  34. Crivelli, A. J., G. Catsadorakis, M. Malakou & E. Rosecchi, 1997. Fish and fisheries of the Prespa lakes. Hydrobiologia 351: 107–125.Google Scholar
  35. Cvijic, J., 1906. Fundamentals of geography and geology of Macedonia and Old Serbia. Books I/II, Serbian Academy of Sciences, Special Edition, Beograd (in Serbian).Google Scholar
  36. Cvijic, J., 1908. Grundlagen der Geographie und Geologie von Mazedonien und Altserbien. Petermans Mitteilungen Ergänzungsheft 162: VIII + 392.Google Scholar
  37. Cvijic, J., 1911. Fundamentals of geography and geology of Macedonia and Old Serbia. Book III, Serbian Academy of Sciences, Special Edition, Beograd (in Serbian).Google Scholar
  38. Decraemer, W. & A. Coomans, 1994. A compendium of our knowledge of the free-living nematofauna of ancient lakes. Advances in Limnology 44: 173–181.Google Scholar
  39. Degens, E. T., R. P. von Herzen, H.-K. Wong, W. G. Deuser & H. W. Jannasch, 1973. Lake Kivu: Structure, chemistry and biology of an East African rift lake. International Journal of Earth Sciences 62(1): 245–277.Google Scholar
  40. Denner, M., 2006. Bathymetrie, Sedimentverteilung und Tektonik im Ohridsee in Albanien und Mazedonien. Unpublished Diploma thesis, University of Leipzig.Google Scholar
  41. Dobzhansky, T., F. J. Ayala, G. L. Stebbins & J. V. Valentine, 1977. Evolution. W. H. Freeman and Company, San Francisco.Google Scholar
  42. Doflein, F., 1921. Mazedonien: Erlebnisse und Beobachtungen eines Naturforschers im Gefolge des deutschen Heeres. Fischer, Jena.Google Scholar
  43. Dumurdzanov, N., T. Serofimovski & B. C. Burchfield, 2004. Evolution of the Neogene-Pleistocene Basins of Macedonia. Geological Society of America Digital Map and Chart Series 1: 1–20.Google Scholar
  44. Dumurdzanov, N., T. Serafimovski & B. C. Burchfiel, 2005. Cenozoic tectonics of Macedonia and its relation to the South Balkan extensional regime. Geosphere 1: 1–22.Google Scholar
  45. Eftimi, R., E. Micevski & A. Stamos, 2001. Geological and hydrogeological conditions of the Prespa Region. In Anovski, T. (ed.), Progress in the Study of Prespa Lake Using Nuclear and Related Techniques. Project Report, IAEA Regional Project RER/8/008, ISBN 9989-650-21-7. Skopje, Macedonia: 11–22.Google Scholar
  46. Eftimi, R. & J. Zoto, 1997. Isotope study of the connection of Ohrid and Prespa lakes. Towards Integrated Conservation and Sustainable Development of Transboundary Macro and Micro Prespa Lakes. International Symposium. Korcha, Albania: 32–37.Google Scholar
  47. Ernst Basler and Partners, 1995. Feasibility Study on the Lake Ohrid Conservation Project. The World Bank, Zollikon, Switzerland.Google Scholar
  48. Fauna Europaea Web Service, 2004. Fauna Europaea version 1.1 [available online at].
  49. Field, M. S., 2002. A lexicon of cave and karst terminology with special reference to environmental karst hydrology. The National Center for Environmental Assessment—Washington Office, Washington, D.C.Google Scholar
  50. Forrester, R. M., 1991. Pliocene-climate history of the western United States derived from lacustrine ostracods. Quaternary Science Reviews 10: 133–146.Google Scholar
  51. Futyuma, D. J., 2005. Evolution. Sinauer, Sunderland, MA.Google Scholar
  52. Gams, I., 2005. Tectonic impacts on poljes and minor basins (case studies of Dinaric Karst). Acta Carsologica 34: 25–41.Google Scholar
  53. Gardner, J. V., L. A. Mayer & J. E. H. Clarke, 2000. Morphology and processes in Lake Tahoe (California-Nevada). GSA-Bulletin 5: 736–746.Google Scholar
  54. Genner, M. J., P. Nichols, G. Carvalho, R. L. Robinson, P. W. Shaw, A. Smith & G. F. Turner, 2007. Evolution of a cichlid fish in a Lake Malawi satellite lake. Proceedings of the Royal Society B—Biological Sciences 274: 2249–2257.Google Scholar
  55. Georgiev, M. L., 1957. Über die Hydrachniden des Ochridsee-Basins. Folia Balcanica 1: 39–49.Google Scholar
  56. Gilbert, J. J. & S. Hadzisce, 1975. Sexual reproduction in the freshwater sponge, Ochridospongia rotunda. Verhandlungen der Internationalen Vereinigung Limnologie 19: 2785–2792.Google Scholar
  57. Gilbert, J. J. & S. Hadzisce, 1977. Life cycle of the freshwater sponge Ochridaspongia rotunda Arndt. Archiv für Hydrobiologie 79: 285–318.Google Scholar
  58. Gilbert, J. J. & S. Hadzisce, 1984. Taxonomic notes on the shallow-water endemic sponges of Lake Ohrid, Yugoslavia, with a description of two new species and a redescription of Spongilla stankovici. Archiv für Hydrobiologie 99: 331–339.Google Scholar
  59. Gierlowski-Kordesch, E. H. & L. E. Park, 2004. Comparing lake species diversity in the modern and fossil record. Journal of Geology 112: 703–717.Google Scholar
  60. Glaubrecht, M., 2008. Adaptive radiation of thalassoid Cerithioidean gastropods in Lake Tanganyika, East Africa: Morphology and systematization of a paludomid species flock in an ancient lake. Zoosystematics and Evolution 84(1): 71–122.Google Scholar
  61. Glaubrecht, M. & T. von Rintelen, 2008. The species flocks of lacustrine gastropods: Tylomelania on Sulawesi as models in speciation and adaptive radiation. Hydrobiologia (this issue).Google Scholar
  62. Glöer, P., C. Albrecht & T. Wilke, 2007. Enigmatic distribution pattern of the Bithyniidae in the Balkan Region (Gastropoda: Rissooidea). Mollusca 25: 13–22.Google Scholar
  63. Goebel, F., 1919. Eine geologische Kartierung im mazedonisch-albanischen Grenzgebiet beiderseits des Ochrida-Sees. Sächsische Akademie der Wissenschaften 71: 257–276.Google Scholar
  64. Golemansky, V. G., 1994. Thecamoebiens (Rhizopoda: Testacea) d’Hygropsammon littoral de trois lacs macedoniens d’origine tectonique: Ohrid, Prespa et Doiran. Archiv für Protistenkunde 144: 309–313.Google Scholar
  65. Gorthner, A., 1992. Bau, Funktion und Evolution komplexer Gastropodenschalen in Langzeit-Seen. Mit einem Beitrag zur Paläobiologie von Gyraulus „multiformes“ im Steinheimer Becken. Stuttgarter Beiträge zur Naturkunde Serie B 190: 1–173.Google Scholar
  66. Gorthner, A., 1994. What is an ancient lake? In Martens K., B. Goddeeris & G. Coulter (eds), Speciation in Ancient Lakes. Archiv für Hydrobiologie 44: 97–100.Google Scholar
  67. Gould, S. J., 1992. Punctuated equilibrium in fact and theory. In Somit, A. & S. Peterson (eds), The Dynamics of Evolution. Cornell University Press, New York: 54–84.Google Scholar
  68. Greenwood, P. H., 1984. What is a species flock? In Echelle, A. A. & I. Kornfield (eds), Evolution of Fish Species Flocks. Orono Press, Maine: 13–19.Google Scholar
  69. Griffiths, H. I. & M. R. Frogley, 2004. Fossil ostracods and faunistics: Implications for the evolution of regional biodiversity. In Griffiths, H. I. & B. Krystufek (eds), Balkan Biodiversity. Kluwer, Dordrecht: 261–272.Google Scholar
  70. Guseska D., G. Kostoski & O. Tasevska, 2007. Seasonal successions of zooplankton in Lake Ohrid pelagic zone during 1996–2006. 1st Symposium for Protection of Natural Lakes in Republic of Macedonia, Ohrid: 163–170.Google Scholar
  71. Haase, M. & P. Bouchet, 2006. The radiation of hydrobioid gastropods (Caenogastropoda, Rissooidea) in ancient Lake Poso, Sulawesi. Hydrobiologia 556: 17–46.Google Scholar
  72. Hadzisce, S., 1953. Beitrag zur Kenntnis der Spongillidenfauna der großen mazedonischen Seen (Dojran, Prespa und Ohridsee). Recueil des Traveaux. Station Hydrobiologique Ohrid 1: 73–103.Google Scholar
  73. Hadzisce, S., 1956. III. Beitrag zur Kenntnis der Gastropodenfauna des Ohridsees. Beschreibung der bis jetzt unbekannten Schnecken und Beispiele der Speciation bei den Gastropoden des Ohridsees. Recueil des Traveaux, Station Hydrobiologique Ohrid 4: 57–107.Google Scholar
  74. Harzhauser, M. & O. Mandic, 2004. The muddy bottom of Lake Pannon—A challenge for dreissenid settlement (Late Miocene; Bivalvia). Palaeogeography, Palaeoclimatology, Palaeoecology 204: 331–352.Google Scholar
  75. Harzhauser, M. & O. Mandic, 2008. Neogene lake systems of Central and South-Eastern Europe: Faunal diversity, gradients and interrelations. Palaeogeography, Palaeoclimatology, Palaeoecology 260: 417–434.Google Scholar
  76. Haug, E., 1922. Traitéde géologie, I-II. Colin, Paris.Google Scholar
  77. Hauswald, A.-K., C. Albrecht & T. Wilke, 2008. Testing two contrasting evolutionary patterns in ancient lakes: Species flock vs. species scatter in valvatid gastropods of Lake Ohrid. Hydrobiologia (this volume).Google Scholar
  78. Herder, F., A. W. Nolte, J. Pfaender, J. Schwarzer, R. K. Hadiaty & U. K. Schliewen, 2006. Adaptive radiation and hybridization in Wallace’s Dreamponds: Evidence from sailfin silversides in the Malili Lakes of Sulawesi. Proceedings of the Royal Society B 273: 2209–2217.PubMedGoogle Scholar
  79. Hinderer, M. & G. Einsele, 2001. The world’s large lake basins as denudation-accumulation systems and implications for their lifetimes. Journal of Paleolimnology 26: 355–372.Google Scholar
  80. Hollis, G. E. & A. C. Stevenson, 1997. The physical basis of the Lake Mikri Prespa systems: Geology, climate, hydrology and water quality. Hydrobiologia 351: 1–19.Google Scholar
  81. Hrabe, S., 1931. Die Oligochaeten aus den Seen Ochrida und Prespa (nach dem von Prof. S. Stankovic gesammelten Material bearbeitet). Zoologisches Jahrbuch, Abteilung für Systematik 61: 1–62.Google Scholar
  82. Hubendick, B., 1960. The Ancylidae of Lake Ochrid and their bearing on intralacustrine speciation. Proceedings of the Zoological Society of London 133: 497–529.Google Scholar
  83. Huxley, J., 1958. A logarithmic time scale for the evolution process. Nature 181: 1653–1654.Google Scholar
  84. Itskovich, V. B., S. I. Belikov, S. M. Efremova, Y. Masuda, A. Krasko, H. C. Schroeder & W. E. G. Müller, 2006. Monophyletic origin of freshwater sponges in ancient lakes based on partial structures of COXI gene. Hydrobiologia 568(S): 155–159.Google Scholar
  85. Kaiser, P., 1959. Über die Atmung von Radix relicta Pol. aus dem Ohrid-See. Recueil des travaux Ohrid 35: 1–5.Google Scholar
  86. Karaman, S., 1953. Die Aselliden des Ohridsees. Periodicum Biologorum: Glasnik Bioloske Sekcije Ser II/B(4–6): 46–76.Google Scholar
  87. Karaman, M., 1971. Zoogeographische Verhältnisse des Prespa- und Ohridsees. Izdanija 4: 1–21.Google Scholar
  88. Karaman, G. S., 1977. Contribution to the knowledge of the Amphipoda. 77. Gammarus ochridensis Schaf. species complex of Ohrid Lake. Odjeljenja Prirodnikh Nauka Crnogorska Akademija Nauka i Umjetnosti Glasnik 2: 49.Google Scholar
  89. Karaman, G. S., 1985. Contribution to the knowledge of the Amphipoda. 151. Gammarus salemaai, new species from Lake Ohrid (fam. Gammaridae). Fragmenta Balcanica Musei Macedonici Scientiarum Naturalium 12: 155–168.Google Scholar
  90. Kenk, R., 1978. The Planarians (Turbellaria: Tricladida Paludicola) of Lake Ohrid in Macedonia. Smithsonian Contributions to Zoology 280: 1–56.Google Scholar
  91. Kilikowska, A., A. Wysocka, J. Sell & M. Zietara, 2006. A note on genetic differentiation within the endemic Proasellus species group from Lake Ohrid. Biology Letters 43: 21–32.Google Scholar
  92. Korniushin, A. V., 2004. The bivalve mollusc fauna of ancient lakes in the context of the historical biogeography of the Balkan region. In Griffith, H. I., et al. (eds), Balkan Biodiversity—Pattern and Process in the European Hotspot. Kluwer Academic Publishers, Dordrecht, Boston, London: 219–241.Google Scholar
  93. Korniushin, A. V., Z. Krstanovski & G. Kostoski, 2000. Anatomical evidence of close affinity between endemic species of Pisidium (Bivalvia, Sphaeriidae) from some ancient lakes, and the widely distributed taxa. Journal of Zoological Systematics and Evolutionary Research 38: 81–86.Google Scholar
  94. Kossmat, F., 1924. Geologie der zentralen Balkanhalbinsel. Borntraeger, Berlin.Google Scholar
  95. Kostoski, G., D. Guseska, Z. Krstanovski, O. Tasevska, L. Velkova-Jordanoska, A. Kilikowska & T. Kretowics, 2007. The phylogenetic position of endemic Cyclops ochridanus from relict Lake Ohrid in relation to other non-endemic Cyclops species inferred from sequencing of the mtDNA cytochrome oxidase I gene. 1st Symposium for Protection of Natural Lakes in Republic of Macedonia, Ohrid: 72–73.Google Scholar
  96. Kostoski, G., D. Guseska & O. Tasevska, 2004. I. Zooplankton Investigations in Lake Ohrid pelagic zone, II Investigations in Littoral Zone of Lake Ohrid. Lakes Ohrid and Prespa Monitoring Program 3rd Report, Ohrid: 45–56.Google Scholar
  97. Kostoski, G., D. Guseska & O. Tasevska, 2005. Zooplankton research in the Lake Ohrid pelagic region. Limnological Investigations of Ohrid and Prespa Lakes 3/4: 79–87.Google Scholar
  98. Krstanovski, Z., 1994. Taxonomy and ecology of Planaria from lakes Ohrid, Prespa, Dojran and Adjacent Water-bodies. PhD thesis, Sts. Cyril and Methodius University, Skopje (in Macedonian).Google Scholar
  99. Laskarev, V., 1935. Aperçu de la paléogéographie néogène du lac d’Ohrid. Verhandlungen der Internationalen Vereinigung für Limnologie 7: 135–141.Google Scholar
  100. Levkov, Z., S. Krstic, D. Metzeltin & T. Nakov, 2007. Diatoms from Lakes Prespa and Ohrid. Iconographia Diatomologica 16: 1–603.Google Scholar
  101. Lomolino, M. V., B. R. Riddle & J. H. Brown, 2006. Biogeography, 3rd ed. Sinauer, Sunderland, MA.Google Scholar
  102. Lukovic, M., 1935. A contribution to the geological history of the tertiary lakes in the Balkan Peninsula. Verhandlungen der Internationalen Vereinigung für Limnologie 7: 122–134.Google Scholar
  103. Macdonald, K. S., L. Yampolsky & J. E. Duffy, 2005. Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Molecular Phylogenetics and Evolution 35(2): 323–343.PubMedGoogle Scholar
  104. Manconi, R. & R. Pronzato, 2002. Suborder Spongillina subord. nov: Freshwater sponges. In Hooper, J. N. A. & R. W. M. van Soest (eds), Systema Porifera: A Guide to the Classification of Sponges. Kluwer, New York: 921–1019.Google Scholar
  105. Manconi, R. & R. Pronzato, 2008. Global diversity of sponges (Porifera: Spongillina) in freshwater. Hydrobiologia 595: 27–33.Google Scholar
  106. Maric, D., B. Radujkovic & D. Sundic, 2007. Endemism of cyprinid fauna from Prespa-Ohrid-Skadar lakes system. 1st Symposium for Protection of Natural Lakes in Republic of Macedonia. Ohrid: 28.Google Scholar
  107. Martens, K., 1997. Speciation in ancient lakes (review). Trends in Ecology and Evolution 12: 177–182.Google Scholar
  108. Martens, K., G. Coulter & B. Goddeeris, 1994. Speciation in ancient lakes—40 years after Brooks. In Martens, K., B. Goddeeris & G. Coulter (eds), Speciation in Ancient Lakes. Archiv für Hydrobiologie 44: 75–96.Google Scholar
  109. Martin, P., 1994. Lake Baikal. In Martens, K., B. Goddeeris & G. Coulter (eds), Speciation in Ancient Lakes. Archiv für Hydrobiologie Special Issues Advances in Limnology 44: 3–11.Google Scholar
  110. Matzinger, A., M. Jordanoski, E. Veljanoska-Sarafiloska, M. Sturm, B. Müller & A. Wüest, 2006a. Is Lake Prespa jeopardizing the ecosystem of ancient Lake Ohrid? Hydrobiologia 553: 89–109.Google Scholar
  111. Matzinger, A., M. Schmid, E. Veljanoska-Sarafiloska, S. Patceva, D. Guseska, B. Wagner, B. Müller, M. Sturm & A. Wüest, 2007. Eutrophication of ancient Lake Ohrid: Global warming amplifies detrimental effects of increased nutrient inputs. Limnology and Oceanography 52: 338–353.Google Scholar
  112. Matzinger, A., Z. Spirkovski, S. Patceva & A. Wüest, 2006b. Sensitivity of ancient Lake Ohrid to local anthropogenic impacts and global warming. Journal of Great Lakes Research 32: 158–179.Google Scholar
  113. Mayr, E., 1940. Speciation phenomena in birds. American Naturalist 74: 249–278.Google Scholar
  114. Meixner, M. J., C. Lüter, C. Eckert, V. Itskovich, D. Janussen, T. von Rintelen, A. V. Bohne, J. M. Meixner & W. R. Hess, 2007. Phylogenetic analysis of freshwater sponges provide evidence for endemism and radiation in ancient lakes. Molecular Phylogenetics and Evolution 45: 875–886.PubMedGoogle Scholar
  115. Michaloudi, E., M. Zarfdjian & P. S. Economidis, 1997. The zooplankton of Lake Mikri Prespa. Hydrobiologia 351: 77–94.Google Scholar
  116. Michel, E., 1994. Why snails radiate: A review of gastropod evolution in long-lived lakes, both recent and fossil. In Martens, K., B. Goddeeris & G. Coulter (eds), Speciation in Ancient Lakes. Archiv für Hydrobiologie Special Issues Advances in Limnology 44: 285–317.Google Scholar
  117. Miho, A. & H. Lange-Bertalot, 2003. Considerations on biodiversity and trophic state of Lake Ohrid (Albanian part) from a microscopic algae point of view. Journal of Environmental Protection and Ecology 4: 543–549.Google Scholar
  118. Milevski, J., P. Ristevski & D. Tanusevska, 1997. Influence of rainfalls on the oscillations at Prespa Lake. Proceedings of International Symposium Towards Integrated Conservation and Sustainable Development of Transboundary Macro and Micro Prespa Lakes, PPNEA, ILAR Typography, Tirana, Albania: 52–57.Google Scholar
  119. Ministry of Environment and Physical Planning, 2003. Country Study for Biodiversity of the Republic of Macedonia (First National Report), Skopje.Google Scholar
  120. Molloy, D. P., L. Giamberini, L. E. Burlakova, A. Y. Karatayev, J. R. Cryan, S. L. Trajanovski & S. P. Trajanovska, 2008. Investigation of the endosymbionts of Dreissena stankovici with morphological and molecular confirmation of host species. In Van der Velde, G., S. Rajagopal & A. Bij de Vaate (eds), Zebra Mussels in Europe. Backhuys Publishers, Leiden (in press).Google Scholar
  121. Müller, P., D. H. Geary & I. Magyar, 1999. The endemic molluscs of the Late Miocene Lake Pannon: Their origin, evolution, and family-level taxonomy. Lethaia 32: 47–60.Google Scholar
  122. Naumoski, T. B., M. Jordanoski & E. Veljanoska-Sarafiloska, 2007. Physical and chemical characteristics of Lake Ohrid. 1st International Symposium for Protection of the Natural Lakes in Republic of Macedonia: 103–112.Google Scholar
  123. Noveska, V., T. Naumoski, D. Gjorgonoska & V. Mitic, 1985. Bibliography for Lake Ohrid. Special edition. Ohrid: 1–42.Google Scholar
  124. Nowack, E., 1929. Geologische Übersicht von Albanien. Erläuterung zur geologischen Karte 1: 200000, Innsbruck.Google Scholar
  125. O’Brien, S. J. & E. Mayr, 1991. Bureaucratic mischief: Recognizing endangered species and subspecies. Science 251: 1187–1188.PubMedGoogle Scholar
  126. Papoutsi-Psychoudaki, S. & A. Psychoudakis, 2000. Agricultural externalities and policy for sustainable agriculture in the Greek part of Prespa. Proceedings of the International Symposium “Sustainable development of Prespa region” Otesehvo 2000: 174–185.Google Scholar
  127. Patceva, S., 2005. Comparative analysis of the phytoplankton communities and the trophic state of Lake Ohrid and Prespa. PhD thesis, Faculty of Natural Sciences and Mathematics, Institute of Biology, University St. Cyril and Methodius, Skopje.Google Scholar
  128. Pawlowski, L. K., 1936. Kurze Notiz über die Hirudineen des Ohrid-Sees. Annales Musei Zoologici Polonici 11: 371–378.Google Scholar
  129. Pesic, V., 2003. Water mites (Acari: Hydrachnidia) from Macedonia. Part 2. Stagnant waters. Acta Zoologica Bulgarica 55(2): 29–42.Google Scholar
  130. Petkovski, T. K., 1969. Einige neue und bemerkenswerte Candoninae aus dem Ohridsee und einigen anderen Fundorten in Europa (Crustacea-Ostracoda). Acta Musei Macedonici Scientiarum Naturalium 11: 81–111.Google Scholar
  131. Petkovski, T. & D. Flössner, 1972. Eine neue Mona–Art (Crustacea: Cladocera) aus dem Ohridsee. Fragmenta Balcanica 9(10): 97–106.Google Scholar
  132. Petkovski, T. K. & T. Karanovic, 1997. Two new copepod species (Crustacea: Copepoda) from the Ohrid Lake. Annales de Limnologie 33(4): 245–253.CrossRefGoogle Scholar
  133. Petkovski, T., B. Scharf & D. Keyser, 2002. New and little known species of the genus Candona (Crustacea, Ostracoda) from Macedonia and other Balkan areas. Limnologica 32: 114–130.Google Scholar
  134. Phillips, R. B., M. P. Matsuoka, I. Konon & K. M. Reed, 2000. Phylogenetic analysis of mitochondrial and nuclear sequences supports inclusion of Acantholingua ohridana in the genus Salmo. Copeia 2: 546–550.Google Scholar
  135. Polinski, V., 1929. Limnološka ispitivanja Balkanskog Poluostrva I. Reliktna fauna gasteropoda Ohridskog Jezera. Glas Srpska Kraljevske Akademije. Belgrade 137: 129–182.Google Scholar
  136. Polinski, W., 1932. Die reliktäre Gastropodenfauna des Ohrida-Sees. Zoologische Jahrbücher Abteilung Systematik 62: 611–666.Google Scholar
  137. Popov, S. V., F. Rögl, A. Y. Rozanov, F. F. Steininger, I. G. Shcherba & M. Kovac, 2004. Lithological-paleogeographic maps of the Paratethys. 10 maps Late Eocene to Pliocene. Courier Forschungsinstitut Senckenberg 250: 1–46.Google Scholar
  138. Popovska, C. & O. Bonacci, 2007. Basic data on the hydrology of Lakes Ohrid and Prespa. Hydrological Processes 21: 658–664.Google Scholar
  139. Por, F. D., 1964. The relict aquatic fauna of the Jordan Valley. Israel Journal of Zoology 12: 47–58.Google Scholar
  140. Raabe, Z., 1965. The parasitic ciliates of gastropods in the Ohrid Lake. Acta Protozoologie 3: 311–320.Google Scholar
  141. Raabe, Z., 1966. The parasitic ciliates of Dreissensia polymorpha and other Bivalvia in the Ohrid Lake. Acta Protozoologie 4: 1–14.Google Scholar
  142. Radoman, P., 1973. New classification of fresh and brackish water Prosobranchia from the Balkans and Asia Minor. Posebna Izdanja, Prirodnjacki Musej u Beogradu 32: 1–30.Google Scholar
  143. Radoman, P., 1983. Hydrobioidea a superfamily of Prosobranchia (Gastropoda), I. Systematics. Serbian Academy of Sciences and Arts, Belgrade: 1–256.Google Scholar
  144. Radoman, P., 1985. Hydrobioidea a superfamily Prosobranchia (Gastropoda), II. Origin, Zoogeography, Evolution in the Balkans and Asia Minor. Monographs Institute of Zoology 1, Beograd.Google Scholar
  145. Rakaj, M., F. Hindak & A. Hindakova, 2000. Phytoplankton diversity of the Albanian part of Lake Shkodra in 1998–1999. Biologia 55: 329–342.Google Scholar
  146. Reed, J. M., B. Krystufek & W. J. Eastwood, 2004. The physical geography of the Balkans and nomenclature of place names. In Griffith, H. I. et al. (eds), Balkan Biodiversity. Kluwer Academic Publishers, Dordrecht, Boston, London: 9–22.Google Scholar
  147. Remy, P., 1934. Sur quelques Hirudinees des Balkans. Annales de la Société Linnéenne de Lyon 77: 17–24.Google Scholar
  148. Remy, P., 1937. Sangsues de Yougoslavie. Bulletin de la Societe Zoologique de France 62: 140–148.Google Scholar
  149. Rensch, B., 1947. Neuere Probleme der Abstammungslehre. Enke, Stuttgart.Google Scholar
  150. Rossiter, A. & H. Kawanabe (eds), 2000. Ancient Lakes: Biodiversity, Ecology and Evolution. Advances in Ecological Research, Vol. 31. Academic Press, London & New York.Google Scholar
  151. Salemaa, H., 1994. Lake Ohrid. In Martens K., B. Goddeeris & G. Coulter (eds), Speciation in Ancient Lakes. Archiv für Hydrobiologie 44: 55–64.Google Scholar
  152. Salemaa, H. & R. Kamaltynov, 1994. The chromosome numbers of endemic Amphipoda and Isopoda – an evolutionary paradox in the lakes Ohrid and Baikal. In, Martens, K., B. Goddeeris & G. Coulter (eds), Speciation in Ancient Lakes. Archiv für Hydrobiologie 44: 247–256.Google Scholar
  153. Sanda, R., 2007. Endemism of cypriniform fishes of Lakes Ohrid and Prespa: A review. 1st Symposium for Protection of Natural Lakes in Republic of Macedonia, Ohrid: 40.Google Scholar
  154. Sanda, R., V. Luskova & J. Vukic, 2005. Notes on the distribution and taxonomic status of Gobio gobio from the Moraca River basin (Montenegro). Folia Zoologica 54: 73–80.Google Scholar
  155. Sapkarev, J., 1964. Fauna of Oligochaeta from Lake Ohrid. Godisen zbornik na Prirodno-matematickiot fakultet na Univerzitetot vo Skopje 15: 5–98 (in Serbocroatic).Google Scholar
  156. Sapkarev, J., 1966. Fauna of Oligochaeta from Lake Ohrid. Godisen zbornik na Prirodno-matematickiot fakultet na Univerzitetot vo Skopje 16: 155–177 (in Serbocroatic).Google Scholar
  157. Sapkarev, J. A., 1975. Sistematika i rasprostranjenje pijavica (Hirudinea) Makedonije (Taxonomy and distribution of leeches (Hirudinea) from Macedonia). Biosistematika 1: 87–99.Google Scholar
  158. Sapkarev, J., 1990. New leeches (Hirudinea) of the ancient lake Ohrid. Fragmenta Balcanica 14: 155–162.Google Scholar
  159. Sapkarev, J., Z. Krstanovski, N. Hristovski, G. Kostoski, Z. Spirkovski, T. Talevski, D. Gusevska & S. Stojanovski, 1998. Present knowledge of the living animal world diversity from the ancient Balkan Lake Ohrid. 2nd International Congress of the Biodiversity, Ecology and Conservation of the Balkan Fauna, Ohrid: 86–87.Google Scholar
  160. Schliewen, U. K., D. Tautz & S. Pääbo, 1994. Sympatric speciation suggested by monophyly of crater lake cichlids. Nature 368: 629–632.PubMedGoogle Scholar
  161. Schneider, W., 1943. Freilebende Nematoden aus dem Ochridsee. Bulletin de l’Academie Serbe des Sciences 136: 135–184.Google Scholar
  162. Schön, I. & K. Martens, 2004. Adaptive, pre-adaptive and non-adaptive components of radiations in ancient lakes. A review. Organisms, Diversity and Evolution 4: 137–156.Google Scholar
  163. Schultheiß, R., C. Albrecht, U. Bößneck & T. Wilke, 2008. The neglected side of speciation in ancient lakes: Phylogeography of an inconspicuous mollusk taxon in lakes Ohrid and Prespa. Hydrobiologia (this volume).Google Scholar
  164. Seehausen, O., 2004. Hybridization and adaptive radiation. Trends in Ecology and Evolution 19: 198–207.PubMedGoogle Scholar
  165. Seehausen, O., 2006. African cichlid fish: A model system in adaptive radiation research. Proceedings of the Royal Society of London B 273: 1978–1998.Google Scholar
  166. Sell, J., A. Wysocka, G. Kostoski & S. Trajanovski, 2007. Genetic diversification of the endemic Ochridagammarus complex in Lake Ohrid explored with mtDNA sequencing. 1st Symposium for Protection of Natural Lakes in Republic of Macedonia, Ohrid: 72–73.Google Scholar
  167. Sherbakov, D. Y., 1999. Molecular phylogenetic studies on the origin of biodiversity in Lake Baikal. Trends in Ecology and Evolution 14: 92–95.Google Scholar
  168. Sherbakov, D. Y., R. M. Kamaltynov, O. B. Ogarkov & E. Verheyen, 1998. Patterns of evolutionary change in Baikalian gammarids inferred from DNA sequences (Crustacea, Amphipoda). Molecular Phylogenetics and Evolution 10: 160–167.PubMedGoogle Scholar
  169. Shumka, S., 2002. Feeding relations of Eudiaptomus gracilis (SARS) and influence on some parameters of their life cycle in Lake Ohrid, Macedonia. Internationale Vereinigung für Theoretische und Angewandte Limnologie Verhandlungen 27(6): 3708–3711.Google Scholar
  170. Siddall, M. E., 2002. Phylogeny of the leech family Erpobdellidae (Hirudinida: Oligochaeta). Invertebrate Systematics 16: 1–6.Google Scholar
  171. Sitnikova, T. Y., 2006. Endemic gastropod distribution in Baikal. Hydrobiologia 568(S): 207–211.Google Scholar
  172. Sket, B., 1968. Zur Kenntnis der Egelfauna (Hirudinea) Jugoslawiens. Academia Scientiarum et Artium Slovenica Cl. IV, 11(4): 127–178.Google Scholar
  173. Sket, B., 1981. Rhynchobdellid leeches (Hirudinea, Rhynchobdellae) in the relic Ohrid Lake region. Biološki Vestnik 29: 67–90.Google Scholar
  174. Sket, B., 1989. Intralacustrine speciation in the genus Dina (Hirudinea, Erpobdellidae) in Lake Ohrid (Yugoslavia). Hydrobiologia 182: 4–58.Google Scholar
  175. Sket, B. & J. Sapkarev, 1992. Distribution of Hirudinea (Annelida) in the ancient Ohrid Lake region. Archiv für Hydrobiologie 124: 225–237.Google Scholar
  176. Smiljkov, S., 2002. Ecology and dynamics of Chironomidae fauna larva (Diptera: Chironomidae) from Ohrid Lake. Makedonska Akademija na Naukite i Umetnostite Oddelenie za Bioloshki i Meditsinski Nauki Prilozi 22(1–2): 47–56.Google Scholar
  177. Smiljkov, S. & J. Sapkarev, 1999. Taxonomical investigations of chironomid larvae (Diptera Chironomidae) from waters of the lowland region of Ohrid Valley. Godishen Zbornik Biologija Prirodno-Matematichki Fakultet na Univerzitetot “Sv. Kiril i Metodij”, Skopje 51(52): 44–49.Google Scholar
  178. Spirkovski, Z., O. Avramovski & A. Kodzoman, 2001. Watershed management in the Lake Ohrid region of Albania and Macedonia, lakes & reservoirs. Research and Management 6: 237–242.Google Scholar
  179. Stankovic, S., 1932. Die Fauna des Ohridsees und ihre Herkunft. Archiv für Hydrobiologie 23: 557–617.Google Scholar
  180. Stankovic, S., 1960. The Balkan Lake Ohrid and Is Living World. Monographiae Biologicae, Vol. IX. Uitgeverij Dr. W. Junk, Den HaagGoogle Scholar
  181. Starobogatov, Y. I. (ed.), 1994. Freshwater Zebra Mussel, Dreissena polymorpha (Pall.) (Bivalvia: Dreissenidae): Systematics, Ecology, and Practical Meaning. Nauka, Moscow (in Russian).Google Scholar
  182. Steindachner, F., 1892. Über einige neue und seltene Fischarten usw. Denkschriften der Akademie der Wissenschaften Wien, Mathematisch-naturwissenschaftliche Klasse 59: 357–384.Google Scholar
  183. Stepien, C. A., C. D. Taylor, I. A. Grigorovich, S. V. Shirman, R. Wei, A. V. Korniushin & K. A. Dabrowska, 2003. DNA and systematic analysis of invasive and native dreissenid mussels: Is Dreissena bugensis really D. rostriformis? Aquatic Invaders: The Digest of the National Aquatic Nuisance Species Clearinghouse 14(1): 8–16.Google Scholar
  184. Stojanovski, S., N. Hristovski, P. Cakic & M. Hristovski, 2004. Fauna of monogenean trematods—Parasites of some cyprinid fishes from the Lake Ohrid (Macedonia). 1st Symposium of Ecologists of the Republic of Montenegro. With International Participation. Abstract Book. Tivat, Serbia and Montenegro: 55.Google Scholar
  185. Stojanovski, S., N. Hristovski, P. Cakic & M. Hristovski, 2005. Fauna of monogenean trematods—Parasites of some cyprinid fishes from the Lake Ohrid (Macedonia). Natura Montenegrina 4: 61–70.Google Scholar
  186. Sturany, R., 1894. Zur Molluskenfauna der europäischen Türkei. Annalen des kaiserlich königlichen Naturhistorischen Hofmuseums 9: 369–394.Google Scholar
  187. Susnik, S., I. Knizhin, A. Snoj & S. Weiss, 2006. Genetic and morphological characterization of a Lake Ohrid endemic, Salmo (Acantholingua) ohridanus with a comparison to sympatric Salmo trutta. Journal of Fish Biology 68(Suppl. A): 2–23.Google Scholar
  188. Susnik, S., A. Snoj, I. Wilson, D. Mrdak & S. Weiss, 2007. Historical demography of brown trout (Salmo trutta) in the Adriatic drainage including the putative S. letnica endemic to lake Ohrid. Molecular Phylogenetics and Evolution 44: 63–76.PubMedGoogle Scholar
  189. Swetlitz, M., 1995. Julian Huxley and the end of evolution. Journal of the History of Biology 28: 181–217.Google Scholar
  190. Sywula, T., Z. Krstanovski, A. Biala, A. Wysocka, A. Kilikowska & J. Sell, 2006. Phylogenetic position of Dendrocoelum lacteum (Tricladida) from the Balcan Lake Ohrid evidenced by allozyme data. Biochemical Systematics and Ecology 34: 212–218.Google Scholar
  191. Sywula, T., Z. Krstanovski, O. Tasevska, J. Sell & T. Kretowicz, 2003. Genetic differences among several species of Tricladida from the relict Lake Ohrid as revealed by enzyme electrophoresis. Folia Biologica 51: 105–109.PubMedGoogle Scholar
  192. Talevska, M., 2007. Distribution of the genus Potamogeton in Lake Ohrid. 1st Symposium for Protection of Natural Lakes in Republic of Macedonia, Ohrid: 183–188.Google Scholar
  193. Talevska, M. & S. Trajanovska, 2005. Lake Ohrid macrophyte vegetation. Limnological Investigations of Ohrid and Prespa Lakes 3/4: 91–102.Google Scholar
  194. Trajanovska, S., 2005. Some basic investigations in the belt of stoneworths from Lake Ohrid. Chara belt. Limnological investigations of Ohrid and Prespa Lakes 3/4: 97–102.Google Scholar
  195. Trajanovska, S. & M. Talevska, 2007. Depth distribution and colonization abilities of charophytes among the other submerged macrophytic vegetation in Lake Ohrid. 1st Symposium for Protection of Natural Lakes in Republic of Macedonia, Ohrid: 88–89.Google Scholar
  196. Trajanovski, S., T. Wilke, B. Budzakoska-Djoreska & Z. Krstanovski, 2006. Evolution of the “Dina” ancient lake species flock (Hirudinae: Erpobdellidae) in lake Ohrid. Berliner Paläobiologische Abhandlungen 9: 63.Google Scholar
  197. van Hinsbergen, D. J. J., C. G. Langereisa & J. E. Meulenkamp, 2005. Revision of the timing, magnitude and distribution of Neogene rotations in the western Aegean region. Tectonophysics 396: 1–34.Google Scholar
  198. Viets, K., 1936. Hydracarinen aus Jugoslavien. (Systematische, ökologische, faunistische und tiergeographische Untersuchungen über die Hydrachnellae und Halacaridae des Süßwassers). Archiv für Hydrobiologie 29: 351–409.Google Scholar
  199. von Rintelen, T., P. Bouchet & M. Glaubrecht, 2007. Ancient lakes as hotspots of diversity: A morphological review of an endemic species flock of Tylomelania (Gastropoda: Cerithioidea: Pachychilidae) in the Malili lake system on Sulawesi, Indonesia. Hydrobiologia 592(1): 11–94.Google Scholar
  200. von Rintelen, T., A. B. Wilson, M. Meyer & M. Glaubrecht, 2004. Escalation and trophic specialization drive adaptive radiation of freshwater gastropods in ancient lakes on Sulawesi, Indonesia. Proceedings of the Royal Society of London B 271: 2842–2850.Google Scholar
  201. Wagner, B., A. F. Lotter, N. Nowaczyk, J. M. Reed, A. Schwalb, R. Sulpizio, V. Valsecchi, M. Wessels & G. Zanchetta, 2008a. A 40,000-year record of environmental change from ancient Lake Ohrid (Albania and Macedonia). Journal of Paleolimnology. doi: 10.1007/s10933-008-9234-2.
  202. Wagner, B., K. Reicherter, G. Daut, M. Wessels, A. Matzinger, A. Schwalb, Z. Spirkovski & M. Sanxhaku, 2008b. The potential of Lake Ohrid for long-term palaeoenvironmental reconstructions. Palaeogeogeography, Palaeoclimatology, Palaeoecology 259: 341–356.Google Scholar
  203. Watzin, M. C., V. Puka & T. B. Naumoski (eds), 2002. Lake Ohrid and its watershed, state of the environment report. Lake Ohrid Conservation Project. Tirana, Albania and Ohrid, Macedonia.Google Scholar
  204. West, K., E. Michel, J. Todd, D. Brown & J. Clabough, 2003. The Gastropods of Lake Tanganyika: Diagnostic key, classification and notes on the fauna. International Association of Theoretical and Applied Limnology, Occasional Publication 2: 1–132.Google Scholar
  205. Wilke, T. & C. Albrecht, 2007. How to stop the creeping biodiversity crisis in Lake Ohrid? Suggestions for sustainable conservation strategies of biodiversity hotspots. Abstracts of the Symposium for protection of the natural lakes in Republic of Macedonia: 44–45.Google Scholar
  206. Wilke, T., C. Albrecht, V. V. Anistratenko, S. K. Sahin & Z. Yildirim, 2007. Testing biogeographical hypotheses in space and time: Faunal relationships of the putative ancient lake Egirdir in Asia Minor. Journal of Biogeography 34: 1807–1821.Google Scholar
  207. Wilke, T. & M. Pfenninger, 2002. Separating historic events from recurrent processes in cryptic species: Phylogeography of mud snails (Hydrobia spp.). Molecular Ecology 11: 1439–1451.PubMedGoogle Scholar
  208. Williamson, P. G., 1981. Paleontological documentation of speciation of Cenozoic molluscs from the Turkana Basin. Nature 293: 437–443.Google Scholar
  209. Wilson, A. B., M. Glaubrecht & A. Meyer, 2004. Ancient lakes as evolutionary reservoirs: Evidence from the thalassoid gastropods of Lake Tanganyika. Proceedings of the Royal Society B, Biological Sciences 271: 529–536.PubMedGoogle Scholar
  210. Wysocka, A., G. Kostoski, A. Kilikowska, B. Wrobel & J. Sell, 2008. Proasellus (Crustacea, Isopoda) species group endemic to the Balkan Lake Ohrid: A case of ecological diversification? Fundamental and Applied Limnology (in press).Google Scholar
  211. Zacharias, I., I. Bertachas, N. Skoulikidis & T. Koussouris, 2002. Greek lakes: Limnological overview. Lakes & Reservoirs: Research and Management 7: 55–62.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Animal Ecology and SystematicsJustus Liebig University GiessenGiessenGermany

Personalised recommendations