Skip to main content
Log in

Benthic algal response to hyporheic-surface water exchange in an alluvial river

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We studied the response of benthic algae to points of hyporheic-surface water exchange in the main channel of the Middle Fork Flathead River within the Nyack Flood Plain, Montana. We examined hyporheic exchange at 120 sites using piezometers and measuring vertical hydraulic gradient (VHG), hydraulic conductivity, and vertical discharge. We removed benthic algae from a single cobble at each site, and we used VHG to group sampling sites for statistical analysis. Algal cell density and chlorophyll a concentration were significantly higher at sites with hyporheic discharge (+VHG, upwelling) compared to both sites with hyporheic recharge (−VHG, downwelling) and sites with no hyporheic-surface water exchange (=VHG, neutral) (ANOVA, P < 0.05). The assemblages of algae at upwelling sites were also significantly different from downwelling and neutral exchange sites (ANOSIM, P < 0.05). Filamentous green algae Stigeoclonium sp. and Zygnema sp. and a chrysophyte, Hydrurus foetidus (Villars) Trevisan were abundant at upwelling sites, whereas an assemblage of diatoms Achnanthidium minutissimum (Kützing) Czarnecki, Cymbella excisa Kützing, Diatoma moniliformis Kützing, and Gomphonema olivaceoides Hustedt, were the most abundant taxa at downwelling and neutral exchange sites, occurring attached to, or in close association with the stalks of Didymosphenia geminata (Lyngbye) Schmidt. These data show that benthic algal communities are structured differently depending on the direction of hyporheic flux in the main channel of a large alluvial river, suggesting that hyporheic-surface exchange may influence the spatial distribution of main-channel benthic algae in rivers with hyporheic-surface water connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • American Public Heath Association, 1998. Standard Methods for the Examination of Water and Wastewater 20th ed. Water Environment Federation. Arlington, VA, USA: 1183 pp.

  • Amoros, C. & A. L. Roux, 1988. Interactions between water bodies within the floodplains of large rivers: Function and development of connectivity. In Schreiver, K. F. (ed.), Connectivity in Landscape Ecology, Proceedings of the 2nd International Seminar of the International Association for Landscape Ecology. Munstersche Geographische, Munster: 125–130.

  • Bahls, L. L., 2004. Northwest Diatoms: A Photographic Catalogue of Species in the Montana Diatom Collection, with Ecological Optima, Associates, and Distribution Records for the Nine Northwestern United States, Vol. 1. Hannaea, Helena, MT, USA: 488 pp.

  • Bansak, T. S., 1998. The Influence of Vertical Hydraulic Exchange on Habitat Heterogeneity and Surficial Primary Production on a Large Alluvial Flood Plain of the Middle Fork Flathead River. University of Montana Missoula, MT, USA: 67 pp.

  • Baxter, C. V. & F. R. Hauer, 2000. Geomorphology, hyporheic exchange and selection of spawning habitat by bull trout (Salvelinus confluentus). Canadian Journal of Fisheries and Aquatic Sciences 57: 1470–1481.

    Article  Google Scholar 

  • Baxter, C. V., F. R. Hauer & W. W. Woessner, 2003. New techniques for installing piezometers, estimating hydraulic conductivity and detecting patterns in groundwater-stream water exchange. Transactions of the American Fisheries Society 132: 493–502.

    Article  Google Scholar 

  • Biggs, B. J. F., 1996. Patterns in benthic algae of streams. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, New York, USA: 31–51.

    Google Scholar 

  • Bold, H. C. & M. J. Wynne, 1985. Introduction to the Algae: Structure and Reproduction. Prentice-Hall, Inc, Englewood Cliffs, New Jersey, USA: 848 pp.

  • Boulton, A. J., 1993. Stream ecology and surface-hyporheic hydrologic exchange: Implications, techniques and limitations. Australian Journal of Marine and Freshwater Research 44: 553–564.

    Article  Google Scholar 

  • Boulton, A. J., S. Findlay, P. Marmonier, E. H. Stanley & H. M. Valett, 1998. The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29: 59–81.

    Article  Google Scholar 

  • Brunke, M. & T. Gonser, 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology 37: 1–33.

    Article  Google Scholar 

  • Case, G. L., 1995. Distribution and Abundance of Zoobenthos in Channel, Springbrook and Hyporheic Habitats of an Alluvial Flood Plain. University of Montana Missoula, MT: 40 pp.

  • Cavallo, B. J., 1997. Floodplain Habitat Heterogeneity and the Distribution, Abundance and Behavior of Fishes and Amphibians in the Middle Fork Flathead River Basin, Montana. University of Montana Missoula, MT: 128 pp.

  • Clark, K. R., 1993. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Coleman, R. L. & C. N. Dahm, 1990. Stream geomorphology: Effects of periphyton standing crop and primary production. Journal of the North American Benthological Society 9: 293–302.

    Article  Google Scholar 

  • Dahm, C. N., N. B. Grimm, P. Marmonier, H. M. Valett & P. Vervier, 1998. Nutrient dynamics at interface between surface water and groundwaters. Freshwater Biology 40: 427–452.

    Article  Google Scholar 

  • Dahm, C. N., H. M. Valett, C. V. Baxter & W. W. Woessner, 2006. Hyporheic zones. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 2nd ed. Academic Press, San Diego, USA: 119–142.

  • Ellis, B. K., J. A. Stanford & J. V. Ward, 1998. Microbial assemblages and production in alluvial aquifers of the Flathead River, Montana, USA. Journal of the North American Benthological Society 17: 382–402.

    Article  Google Scholar 

  • Fetter, C. W., 1994. Applied Hydrogeology, 3rd ed. Macmillan, New York, USA: 691 pp.

  • Ford, T. E. & R. J. Naiman, 1989. Groundwater-surface water relationships in boreal forests watersheds: Dissolved organic carbon and inorganic nutrient dynamics. Canadian Journal of Fisheries and Aquatic Sciences 46: 41–49.

    Article  CAS  Google Scholar 

  • Freeman, M. C., 1986. The role of nitrogen and phosphorus in the development of Cladaphora glomerata in the Manawatu River, New Zealand. Hydrobiologia 131: 23–30.

    Article  CAS  Google Scholar 

  • Freeze, R. A. & J. A. Cherry, 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA: 604 pp.

  • Frissell, C. A., W. J. Liss, C. E. Warren & M. D. Hurley, 1986. A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environmental Management 10: 199–214.

    Article  Google Scholar 

  • Gilbert, J. M., J. Dole-Olivier, P. Marmonier & P. Vervier, 1990. Surface water-groundwater ecotones. In Naiman, R. J. & H. Decamps (eds), Ecology and Management of Aquatic-Terrestrial Ecotones. Parthenon Publishers, London, UK: 199–255.

    Google Scholar 

  • Graham, L. E. & L. W. Wilcox, 2000. Algae. Prentice Hall, Upper Saddle River, New Jersey, USA: 640 pp.

  • Henry, J. C. & S. G. Fisher, 2003. Spatial segregation of periphyton communities in a desert stream: Causes and consequences of N cycling. Journal of the North American Benthological Society 22: 511–527.

    Article  Google Scholar 

  • Hvorslev, M. J., 1951. Time lag and soil permeability in groundwater observations. Bulletin No. 36, Waterways Experiment Station, Corps of Engineers, Vicksburg, MS, USA: 50 pp.

  • Kingston, J. C., 2003. Araphid and monoraphid diatoms. In Wehr, J. D. & R. G. Sheath (eds), Freshwater Algae of North America: Ecology and Classification. Academic Press, New York, USA: 595–636.

    Chapter  Google Scholar 

  • Kociolek, J. P. & S. A. Spaulding, 2003. Eunotioid and asymmetrical naviculoid diatoms. In Wehr, J. D. & R. G. Sheath (eds), Freshwater Algae of North America: Ecology and Classification. Academic Press, New York, USA: 655–684.

    Chapter  Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae, teil 1. Naviculaceae. Spektrum Akademischer Verlag, Heidelberg, Germany: 876 pp.

  • Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae, teil 2. Epithemiaceae, Bacillariophyceae, Surirellaceae. Spektrum Akademischer Verlag, Heidelberg, Germany: 612 pp.

  • Krammer, K. & H. Lange-Bertalot, 1991a. Bacillariophyceae, teil 3. Centrales, Fragilariaceae, Eunotiaceae, Achnanthaceae. Spektrum Akademischer Verlag, Heidelberg, Germany: 576 pp.

  • Krammer, K. & H. Lange-Bertalot, 1991b. Bacillariophyceae, teil 4. Achnanthaceae, kritische erganzungen zu Navicula (lineolate) und Gomphonema. Spektrum Akademischer Verlag, Heidelberg, Germany: 437 pp.

  • Lowe, R. L. & G. D. Laliberte, 2006. Benthic stream algae: Distribution and structure. In Hauer F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 2nd ed. Academic Press, San Diego, USA: 327–356.

  • Lowe, R. L. & Y. Pan, 1996. Benthic algal communities as biological monitors. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego, USA: 705–739.

    Google Scholar 

  • Patrick, R. & C. W. Reimer, 1966. The Diatoms of the United States Exclusive of Alaska and Hawaii, Vol. 1: Fragilariaceae, Eunotiaceae, Acahnanthaceae, Naviculaceae. The Academy of Natural Sciences of Philadelphia, Philadelphia, PA, USA: 688 pp.

  • Patrick, R. & C. W. Reimer, 1975. The Diatoms of the United States Exclusive of Alaska and Hawaii, Vol. 2, Part 1: Entomoneidaceae, Cymbellaceae, Gomphonemancae, Epithemiaceae. The Academy of Natural Sciences of Philadelphia, Philadelphia, PA, USA: 213 pp.

  • Pepin, D. M. & F. R. Hauer, 2002. Benthic responses to groundwater-surface water exchange in 2 alluvial rivers in northwestern Montana. Journal of the North American Benthological Society 21: 370–383.

    Article  Google Scholar 

  • Poole, G. C., 2000. Analysis and Dynamic Simulation of Morphologic Controls on Surface- and Ground-Water Flux in a Large Alluvial Flood Plain. University of Montana Missoula, MT, USA: 64 pp.

  • Prescott, G. W., 1962. The Algae of the Western Great Lakes Area, With an Illustrated Key to the Genera of Desmids and Freshwater Diatoms. Wm. C. Brown Company, Dubuque, IA, USA: 977 pp.

  • Prescott, G. W. & G. E. Dillard, 1979. A checklist of algal species reported from Montana, 1891–1977. Montana Academy of Sciences, Monograph No. 1, Supplement to the Proceedings, Vol. 38.

  • SAS Institute, Inc., 2002. JMP Release, 5.0.1a. SAS Institute Inc. Cary, NC, USA.

    Google Scholar 

  • Spaulding, S. & L. Elwell, 2007. Increase in nuisance blooms and geographic expansion of the freshwater diatom Didymosphenia geminata (White paper). United States Environmental Protection Agency, 33 pp.

  • Squires, L. E., S. R. Rushforth & D. J. Brotherson, 1979. Algal response to a thermal effluent: Study of a power station on the Provo River Utah, USA. Hydrobiologia 63: 1011–1017.

    Article  Google Scholar 

  • Stanford, J. A., 2006. Landscapes and riverscapes. In Hauer F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 2nd ed. Academic Press, San Diego, USA: 3–31.

    Google Scholar 

  • Stanford, J. A., M. S. Lorang & F. R. Hauer, 2005. The shifting habitat mosaic of river ecosystems. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 29: 123–136.

    Google Scholar 

  • Stanford, J. A. & J. V. Ward, 1988. The hyporheic habitat of river ecosystems. Nature 335: 64–66.

    Article  Google Scholar 

  • Stanford, J. A. & J. V. Ward, 1993. An ecosystem perspective of alluvial rivers: Connectivity and the hyporheic corridor. Journal of the North American Benthological Society 12: 48–60.

    Article  Google Scholar 

  • Stanford, J. A., J. V. Ward & B. K. Ellis, 1994. Ecology of the alluvial aquifers of the Flathead River, Montana. In Gibert, J., D. L. Danielopol & J. A. Stanford (eds), Groundwater Ecology. Academic Press, San Diego, USA: 367–390.

    Google Scholar 

  • Steinman, A. D. & G. A. Lamberti, 2006. Biomass and pigments of benthic algae. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 2nd ed. Academic Press, San Diego, USA: 357–380.

    Google Scholar 

  • Steinman, A. D. & P. J. Mulholland, 2006. Phosphorus limitation, uptake, and turnover in stream algae. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 2nd ed. Academic Press, San Diego, USA: 187–212.

    Google Scholar 

  • Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), 1996. Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, New York, USA: 753 pp.

  • Stevenson, R. J. & S. L. Rollins, 2006. Ecological Assessments with Benthic Algae. In Hauer F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 2nd ed. Academic Press, San Diego, USA: 785–803.

    Google Scholar 

  • Tett, P., M. G. Kelly & G. M. Hornberger, 1975. A method for the spectrophotometric measurement of chlorophyll a and pheophytin a in benthic microalgae. Journal of Limnology and Oceanography 20: 887–896.

    Article  Google Scholar 

  • Valett, H. M., S. G. Fisher, N. B. Grimm & P. Camill, 1994. Vertical hydrologic exchange and ecological stability of a desert stream ecosystem. Ecology 75: 548–560.

    Article  Google Scholar 

  • Valett, H. M., S. G. Fisher & E. H. Stanley, 1990. Physical and chemical characteristics of the hyporheic zone of a Sonoran Desert stream. Journal of the North American Benthological Society 9: 201–215.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummings, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Science 37: 130–137.

    Google Scholar 

  • Ward, J. V., 1985. Thermal characteristics of running water. Hydrobiologia 125: 31–46.

    Article  Google Scholar 

  • Ward, J. V., 1989. The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society 8: 2–8.

    Article  Google Scholar 

  • Ward, J. V., 1997. An expansive perspective of riverine landscapes: Pattern and process across scales. Gaia 6: 52–60.

    Google Scholar 

  • Ward, J. V., G. Bretschko, M. Brunke, D. Danielopol, J. Gilbert, T. Gonser & A. G. Hildrew, 1998. The boundaries of river systems: The metazoan perspective. Freshwater Biology 40: 531–569.

    Article  Google Scholar 

  • Webster, J. R. & B. C. Patten, 1979. Effects of watershed perturbation on stream potassium and calcium dynamics. Ecological Monographs 49: 51–72.

    Article  CAS  Google Scholar 

  • Wehr J. D. & R. G. Sheath (eds), 2003. Freshwater Algae of North America: Ecology and Classification. Academic Press, New York, USA: 918 pp.

  • White, D. S., 1993. Perspectives on defining and delineating hyporheic zones. Journal of the North American Benthological Society 12: 61–69.

    Article  Google Scholar 

  • Whited, D. C., J. A. Stanford & J. S. Kimball, 2003. Application of airborne multispectral digital imagery to characterize the riverine habitat. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie. 28: 1373–1380.

    Google Scholar 

  • Wondzell, M., 1992. Vegetation Patterns Along the Middle Fork of the Flathead River, Glacier National Park, Montana. Colorado State University Fort Collins, CO, USA: 243 pp.

Download references

Acknowledgements

We thank faculty and staff at the Flathead Lake Biological Station especially Jim Craft, Scott Relyea, and Kristin Olson for laboratory assistance, and Diane Whited for overlaying sampling sites onto satellite images of the Middle Fork within the Nyack Flood Plain. We also thank the Dalimata family for access to the Nyack research site and Loren Bahls for advice on Montana algae. Financial assistance was provided by the Matthew Levitan Scholarship and the Harry H. Faucett Jr. Scholarship awarded to K. Wyatt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin H. Wyatt.

Additional information

Handling editor: J. Padisak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wyatt, K.H., Hauer, F.R. & Pessoney, G.F. Benthic algal response to hyporheic-surface water exchange in an alluvial river. Hydrobiologia 607, 151–161 (2008). https://doi.org/10.1007/s10750-008-9385-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9385-1

Keywords