Skip to main content

Advertisement

Log in

Effects of thermal regime on mayfly assemblages in mountain streams

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The variation in thermal regime and elevation among streams in the Sawtooth Mountains of Idaho, USA was used to test hypotheses about forces structuring larval mayfly assemblages. Sites above and below lakes were included to maximize variation in thermal regime. Forty-five sites were sampled for mayfly larvae and their summer thermal regime was measured. Ordination methods were used to analyze variation in the mayfly assemblages. Principal components analysis showed that mayfly assemblages were strongly and consistently affected by lakes within the stream system, apparently through the effects of lakes on stream temperature. Redundancy analysis explained 51% of the variation in assemblages and identified maximum water temperature and elevation as strong predictors of mayfly assemblages. Elevation influenced assemblage structure independently of summer maximum water temperature, suggesting that air temperature or some other elevation-dependent feature is also important. As predicted by the River Continuum Concept, mayfly diversity increased with increasing maximum daily range in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams, J., 2004. Stream bugs as biomonitors: a guide to Pacific Northwest macroinvertebrate monitoring and identification. The Xerces Society, Portland, Oregon.

    Google Scholar 

  • Arp, C. D., M. N. Gooseff, M. A. Baker & W. Wurtsbaugh, 2006. Surface-water hydrodynamics and regimes of a small mountain stream-lake ecosystem. Journal of Hydrology 329: 500–513.

    Article  Google Scholar 

  • Briers, R. A., H. M. Cariss & J. H. R. Gee, 2003. Flight activity of adult stoneflies in relation to weather. Ecological Entomology 28: 31–40.

    Article  Google Scholar 

  • Brittain, J. E., E. Castella, S. Knispel, V. Lencioni, B. Lods-Crozet, B. Maiolini, A. M. Milner, S. J. Slatveit & D. L. Snook, 2003. Ephemeropteran and Plecopteran communities in glacial rivers. In Gaino, E. (ed.), Research Update on Ephemeroptera and Plecoptera. University of Perugia, Perugia, Italy.

    Google Scholar 

  • Brussock, P. P. & A. V. Brown, 1991. Riffle-pool geomorphology disrupts longitudinal patterns of stream benthos. Hydrobiologia 220: 109–117.

    Article  Google Scholar 

  • Cao, Y., D. P. Larsen, R. M. Hughes, P. L. Angermeier & T. M. Patton, 2002. Sampling effort affects multivariate comparisons of stream assemblages. Journal of the North American Benthological Society 21: 701–714.

    Article  Google Scholar 

  • Doberstein, C. P., J. R. Karr & L. L. Conquest, 2000. The effect of fixed-count subsampling on macroinvertebrate biomonitoring in small streams. Freshwater Biology 44: 355–371.

    Article  Google Scholar 

  • Edmunds, G. F. Jr. & R. D. Waltz, 1996. Ephemeroptera. In Merritt, R. W. & K. W. Cummins (eds), An Introduction to the Aquatic Insects of North America, 3rd edn. Kendall/Hunt Publishing Co., Dubuque, Iowa.

    Google Scholar 

  • Finn, D. S. & N. L. Poff, 2005. Variability and convergence in benthic communities along the longitudinal gradients of four physically similar Rocky Mountain streams. Freshwater Biology 50: 243–261.

    Article  Google Scholar 

  • Haidekker, A. & D. Hering, 2007. Relationship between benthic insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: a multivariate study. Aquatic Ecology. doi:10.1007/s10452-007-9097-z.

  • Harding, J. S., 1992. Physico-chemical parameters and invertebrate faunas of three lake inflows and outlets in Westland, New Zealand. New Zealand Journal of Marine and Freshwater Research 26: 95–102.

    CAS  Google Scholar 

  • Harding, J. S., 1994. Variation in benthic fauna between differing lake outlet types in New Zealand. New Zealand Journal of Marine and Freshwater Research 28: 417–437.

    Article  CAS  Google Scholar 

  • Hawkins, C. P., J. M. Hogue, L. M. Decker & J. W. Feminella, 1997. Channel morphology, water temperature, and assemblage structure of stream insects. Journal of the North American Benthological Society 16: 728–749.

    Article  Google Scholar 

  • Hieber, M., C. T. Robinson, U. Uehlinger & J. V. Ward, 2005. A comparison of benthic macroinvertebrate assemblages among different types of alpine streams. Freshwater Biology 50: 2087–2100.

    Article  Google Scholar 

  • Jacobsen, D., R. Schultz & A. Encalada, 1997. Structure and diversity of stream invertebrate assemblages: the influence of temperature with altitude and latitude. Freshwater Biology 38: 247–261.

    Article  Google Scholar 

  • Jongman, R. H. G., C. J. F. ter Braak & O. F. R. van Tongeren, 1995. Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kamler, E., 1965. Thermal conditions in mountain waters and their influence on the distribution of Plecoptera and Ephemeroptera larvae. Ekologia Polska – Seria A 20: 1–38.

    Google Scholar 

  • Kling, G. W., G. W. Kipphut, M. M. Miller & W. J. O’Briens, 2000. Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshwater Biology 43: 477–497.

    Article  Google Scholar 

  • Li, J., A. Herlihy, W. Gerth, P. Kaufmann, S. Gregory, S. Urquhart & D. Larsen, 2001. Variability in stream macroinvertebrates at multiple spatial scales. Freshwater Biology 46: 87–97.

    Article  Google Scholar 

  • Malmqvist, B., 2002. Aquatic invertebrates in riverine landscapes. Freshwater Biology 47: 679–694.

    Article  Google Scholar 

  • Malmqvist, B. & A. Eriksson, 1995. Benthic insects in Swedish lake-outlet streams: patterns in species richness and assemblage structure. Freshwater Biology 34: 285–296.

    Article  Google Scholar 

  • Minshall, G. W., R. C. Petersen Jr. & C. F. Nimz, 1985. Species richness in streams of different size from the same drainage basin. American Naturalist 125: 16–38.

    Article  Google Scholar 

  • Miserendino, M. L., 2001. Macroinvertebrate assemblages in Andean Patagonian rivers and streams: environmental relationships. Hydrobiologia 444: 147–158.

    Article  Google Scholar 

  • Ott, D. S. & T. R. Maret, 2003. Aquatic assemblages and their relation to temperature variables of least-disturbed streams in the Salmon River Basin, central Idaho, 2001. United States Geological Survey Water-Resources Investigations Report 03-4076.

  • Parsons, M., M. C. Thoms & R. H. Norris, 2003. Scales of macroinvertebrate distribution in relation to the hierarchical organization of river systems. Journal of the North American Benthological Society 22: 105–122.

    Article  Google Scholar 

  • Perry, S. A. & A. L. Sheldon, 1986. Effects of exported seston on aquatic insect faunal similarity and species richness in lake outlet streams in Montana, USA. Hydrobiologica 137: 65–77.

    Article  Google Scholar 

  • Richardson, J. S. & R. J. Mackay, 1991. Lake outlets and the distribution of filter feeders: an assessment of hypotheses. Oikos 62: 370–380.

    Article  Google Scholar 

  • Robinson, C. T. & G. W. Minshall, 1990. Longitudinal development of macroinvertebrate communities below oligotrophic lake outlets. Great Basin Naturalist 50: 303–311.

    Google Scholar 

  • Sponseller, R. A., E. F. Benfield & H. M. Valett, 2001. Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwater Biology 46: 1409–1424.

    Article  Google Scholar 

  • Sweeney, B. W, 1978. Bioenergetic and developmental response of a mayfly to thermal variation. Limnology and Oceanography 23: 461–477.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Science 37: 130–137.

    Article  Google Scholar 

  • Vinson, M. R. & C. P. Hawkins, 1996. Effects of sampling area and subsampling procedure on comparisons of taxa richness in streams. Journal of the North American Benthological Society 15: 392–399.

    Article  Google Scholar 

  • Vinson, M. R. & C. P. Hawkins, 1998. Biodiversity of stream insects: variation at local, basin, and regional scales. Annual Review of Entomology 1998: 271–293.

    Article  Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1982. Thermal responses in the evolutionary ecology of aquatic insects. Annual Review of Entomology 27: 97–117.

    Article  Google Scholar 

  • Wotton, R. S., 1988. Very high secondary production at a lake outlet. Freshwater Biology 20: 341–346.

    Article  Google Scholar 

  • Wotton, R.S, 1995. Temperature and lake-outlet communities. Journal of Thermal Biology 20: 121–125.

    Article  Google Scholar 

  • Wright, K. K. & J. L. Li, 2002. From continua to patches: examining stream community structure over large environmental gradients. Canadian Journal of Fisheries and Aquatic Science 59: 1404–1417.

    Article  Google Scholar 

  • Wurtsbaugh, W. A., M. A. Baker, H. P. Gross & P. D. Brown, 2005. Lakes as nutrient “sources” for watersheds: a landscape analysis of the temporal flux of nitrogen through sub-alpine lakes and streams. Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 29: 645–649.

    CAS  Google Scholar 

  • Yuan, L. L., 2007. Effects of measurement error on inferences of environmental conditions. Journal of the North American Benthological Society 26: 152–163.

    Article  Google Scholar 

  • Zar, J. H., 1996. Biostatistical Analysis, 3rd edn. Prentice Hall, New Jersey.

    Google Scholar 

Download references

Acknowledgments

The National Science Foundation (Award DEB 01-32983 and an ROA Supplement to that award), Texas Lutheran University, and Utah State University provided financial and logistical support. I thank Wayne Wurtsbaugh and Bob Hall for aid in the development of the project, and Wayne Wurtsbaugh for generously hosting my visit at Utah State University and commenting on the manuscript. Chris Arp and Jessie Garrett provided much useful information on study sites and temperature monitoring. Two anonymous reviewers provided many helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Gustafson.

Additional information

Handling editor: R. Bailey

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gustafson, M.P. Effects of thermal regime on mayfly assemblages in mountain streams. Hydrobiologia 605, 235–246 (2008). https://doi.org/10.1007/s10750-008-9357-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9357-5

Keywords

Navigation