, Volume 605, Issue 1, pp 143–157 | Cite as

Spatial and temporal distribution of nanoflagellates in the northern South China Sea

  • Bangqin Huang
  • Wenlu Lan
  • Zhenrui Cao
  • Minhan Dai
  • Lingfeng Huang
  • Nianzhi Jiao
  • Huasheng Hong
Primary research paper


Seasonal variation, horizontal and vertical distribution, and cell size of nanoflagellates, together with physico-chemical and biological factors, were studied in the northern South China Sea (SCS). It was found that nanoflagellate abundance ranged from 0.157 × 103 to 9.193 × 103 cells/ml (with a mean of 0.891 × 103) in winter (February, 2004), while it ranged from 0.107 × 103 to 5.417 × 103  cells/ml (with a mean of 0.599 × 103) in summer (July, 2004). Nanoflagellates were more abundant in winter than summer in offshore regions, showing an unique seasonal pattern in this subtropical marginal sea. The abundance of nanoflagellates decreased from the estuary to the offshore region. Vertical distribution of nanoflagellates coupled well with that of bacteria and Chl a. The small size fraction of less than 5 μm dominated the nanoflagellate populations. Wind-driven mixing, eddies, availability of nutrients as well as Chl a and abundance of picoplankton seemed to be the major controlling factors for the spatial distribution and seasonal variation of nanoflagellates in the study area.


Nanoflagellates Abundance Seasonal variation Distribution Controlling factors Northern South China Sea 



The authors would like to thank the captain and crew of R/V “Yanping 2”, who made concerted efforts during field sampling. We thank Professor Ning Xiuren for his Chl a data in winter 2004, and Mr Pan Ke for his help in nanoflagellate identification. This work was supported by a grant from the Natural Science Foundation of China (No. 40331004, 40521003, 40730846,), and by an award from the Program for New Century Excellent Talents in University (to B.Q. Huang). The work was also partially funded by a National Basic Key Research Program of the Ministry of Science and Technology of China (China GLOBEC-IMBER 2006CB400604). We thank Professor John Hodgkiss of The University of Hong Kong for his assistance with English.


  1. Benitez-Nelson, C. R., R. R. Bidigare, T. D. Dickey, M. R. Landry, C. L. Leonard, S. L. Brown, F. Nencioli, Y. M. Rii, K. Maiti, J. W. Becker, T. S. Bibby, W. Black, W. Cai, C. A. Carlson, F. Chen, V. S. Kuwahara, C. Mahaffey, P. M. McAndrew, P. D. Quay, M. S. Rappé, K. E. Selph, M. P. Simmons & E. J. Yang, 2007. Mesoscale eddies drive increased silica export in the subtropical Pacific Ocean. Science 316: 1017–1121.PubMedCrossRefGoogle Scholar
  2. Brandt, S. M. & M. A. Sleigh, 2000. The quantitative occurrence of different taxa of heterotrophic flagellates in Southampton Water, U.K. Estuarine, Coastal and Shelf Science 51: 91–102.CrossRefGoogle Scholar
  3. Calbet, A., M. R. Landry & S. Nunnery, 2001. Bacteria-flagellate interactions in the microbial food web of the oligotrophic subtropical North Pacific. Aquatic Microbial Ecology 23: 283–292.CrossRefGoogle Scholar
  4. Chavez, F. P., K. R. Buck & R. T. Barber, 1990. Phytoplankton taxa in relation to primary production in the equatorial Pacific. Deep-Sea Research 37: 1733–1752.CrossRefGoogle Scholar
  5. Chen, C. C., F. K. Shiah, S. W. Chung & K. K. Liu, 2006. Winter phytoplankton blooms in the shallow mixed layer of the South China Sea enhanced by upwelling. Journal of Marine Systems 59: 97–110.CrossRefGoogle Scholar
  6. Falkowski, P. G., D. Ziemann, Z. Kolber & P. K. Bienfang, 1991. Role of eddy pumping in enhancing primary production in the ocean. Nature 352: 55–58.CrossRefGoogle Scholar
  7. Hu, J. Y., H. Kawamura, H. S. Hong & Y. Q. Qi, 2000. A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion. Journal of Oceanography 56: 607–624.CrossRefGoogle Scholar
  8. Huang, L. F., F. Guo, B. Q. Huang & T. Xiao, 2003. Distribution pattern of marine flagellate and its controlling factors in the central and north part of Yellow Sea in early summer. Acta Oceanologica sinica 22(2): 273–280.Google Scholar
  9. Jiao, N. Z., Y. H. Yang, H. Koshikawa & M. Watanabe, 2002. Influence of hydrographic conditions on picoplankton distribution in the East China Sea. Aquatic Microbial Ecology 30: 37–48.CrossRefGoogle Scholar
  10. Kuuppo, P., 1994. Annual variation in the abundance and. size of heterotrophic nanoflagellates on the SW coast of Finland, the Baltic Sea. Journal of Plankton Research 16: 1525–1542.CrossRefGoogle Scholar
  11. Lee, W. L. & D. J. Patterson, 2002. Abundance and biomass of heterotrophic flagellates, and factors controlling their abundance and distribution in sediments of Botany Bay. Microbial Ecology 43: 467–481.PubMedCrossRefGoogle Scholar
  12. Lips, I., U. Lips, K. Kononen & A. Jaanus, 2005. The effect of hydrodynamics on the phytoplankton primary production and species composition at the entrance to the Gulf of Finland, Baltic Sea in July 1996. Biology/Ecology 54: 210–229.Google Scholar
  13. Lin, Y. S., W. X. Luo, W. Q. Cao & S. J. Li, 2001. Studies on heterotrophic nanoflagellates in Taiwan Strait I: Distribution of abundance and biomass of HNF in Southern Waters, summer of 1997. Journal of Xiamen University, NaturalScience 40(3): 803–806.Google Scholar
  14. Mackas, D. M. & M. Galbraith, 2002. Zooplankton distribution and dynamics in a North Pacific eddy of coastal origin: I. contributions. Transport and loss of continental species. Journal of Oceanography 58: 725–738.CrossRefGoogle Scholar
  15. McGillicuddy, D. J. Jr., L. A. Anderson, N. R. Bates, T. Bibby, K. O. Buesseler, C. A. Carlson, C. S. Davis, C. Ewart, P. G. Falkowski, S. A. Goldthwait, D. A. Hansell, W. J. Jenkins, R. Johnson, V. K. Kosnyrev, J. R. Ledwell, Q. P. Li, D. A. Siegel & D. K. Steinberg, 2007. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 316: 1021–1126.PubMedCrossRefGoogle Scholar
  16. Nielsen, T. G., B. Koekkegaard, K. Richardson, F. B. Pedersen & L. Hansen, 1993. Structure of plankton communities in the Dogger Bank area, North Sea. during a stratified situation. Marine Ecology Progress Series 95: 115–131.CrossRefGoogle Scholar
  17. Ning, X., F. Chai, H. Xue, Y. Cai, C. Liu & J. Shi, 2004. Physical–biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea. Journal of Geophysical Research 109: C10005, doi 10.1029/2004JC002365.
  18. Pan, K, L. F. Huang, F. Guo & B. Q. Huang, 2005. The quantitative relationship between flagellates and suspended particles in Huanghai Sea and East Sea in summer. Acta Oceanologica sinica 27: 107–115.Google Scholar
  19. Parsons, T. R., M. Yoshiaki & C. M. Lalli, 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford.Google Scholar
  20. Patterson, D. P. & J. Larsen, 1991. The Biology of Free-Living Heterotrophic Flagellates. Oxford: Clarendon Press: 1–56.Google Scholar
  21. Patterson, D. J., K. Nygaard, G. Streinberg & C. M. Turkey, 1993. Heterotrophic flagellate and other protits associated with oceanic detritus thoughout the water column in the mid North Atlantic. Journal of the Marine Biology Association of the United Kingdom 73: 67–95.CrossRefGoogle Scholar
  22. Rat’kova, T. N. & P. Wassmann, 2002. Seasonal variation and spatial distribution of phyto- and protozooplankton in the central Barents Sea. Journal of Marine System 38: 47–75.CrossRefGoogle Scholar
  23. Reid, P. C., C. M. Turley & P. H. Burkill, 1991. Protozoa and Their Role in Marine Process. Springer-Verlag, Berlin.Google Scholar
  24. Safi, K. A. & J. A. Hall, 1997. Factors influencing autotrophic and heterotrophic nanoflagellate abundance in five water masses surrounding New Zealand. New Zealand Journal of Marine and Freshwater Research 31: 51–56.CrossRefGoogle Scholar
  25. Sanders, R. W., D. A. Caron & U. G. Berninger, 1992. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh-waters: an inter-ecosystem comparison. Marine Ecology Progress Series 86: 1–14.CrossRefGoogle Scholar
  26. Sherr, E. B. & B. F. Sherr, 1993. Preservation and storage of samples for enumeration of heterotrophic protists. In Kemp P., B. Sherr, E. Sherr & J. Cole (eds), Current Methods in Aquatic Microbial Ecology. Lewis Publ, NY: 207–212.Google Scholar
  27. Sherr, B. F. & E. B. Sherr, 2003. Community respiration/production and bacterial activity in the upper water column of the central Arctic Ocean. Deep-Sea Research I 50: 529–542.CrossRefGoogle Scholar
  28. Sherr, E. B., B. F. Sherr, P. A. Wheeler & K. Thompson, 2003. Temporal and spatial variation in stocks of autotrophic and heterotrophic microbes in the upper water column of the central Arctic Ocean. Deep-Sea Research I 50: 557–571.CrossRefGoogle Scholar
  29. Sorokin, Y. I., 1977. The heterotrophic phase of plankton succession in the Japan Sea. Marine Biology 41: 107–117.CrossRefGoogle Scholar
  30. Stelfox, C. E., P. H. Burkill, E. S. Edwards, R. P. Harris & M. A. Sleigh, 1999. The structure of zooplankton communities, in the 2 to 2000 μm size range, in the Arabian Sea during and after the SW monsoon, 1994. Deep-Sea Research II 46: 815–842.CrossRefGoogle Scholar
  31. Tamigneaux, E., E. Vazquez, M. Mingelbeir, B. Klein & L. Legendre, 1995. Environmental control of phytoplankton assemblages in nearshore marine waters, with special emphasis on phototropic ultraplankton. Journal of Plankton Research 17: 1421–1447.CrossRefGoogle Scholar
  32. Tong, S. M., 1997. Heterotrophic flagellates from the water column in Shark Bay, Western Australia. Marine Biology 128: 517–536.CrossRefGoogle Scholar
  33. Tsai, A. Y., K. P. Chiang, Y. F. Chan, Y. C. Lin & J. Chang, 2007. Pigmented nanoflagellates in the coastal western subtropical Pacific are important grazers on Synechococcus populations. Journal of Plankton Research 29(1): 71–77.CrossRefGoogle Scholar
  34. Tseng, C. M., G. T. F. Wong, I. I. Lin, C. R. Wu & K. K. Liu, 2005. A unique seasonal pattern in phytoplankton biomass in low-latitude waters in the South China Sea. Geophysical Research Letters 32: L08608.CrossRefGoogle Scholar
  35. Urrutxurtu, I., E. Orive & A. Sota, 2003. Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay). Estuarine, Coastal and Shelf Science 57: 1169–1182.CrossRefGoogle Scholar
  36. Verity, P. G., D. K. Stoecker, M. E. Sieracki & J. R. Nelson, 1996. Microzooplankton grazing of primary production at 140°W in the equatorial Pacific. Deep-Sea Research II 43: 1227–1255.CrossRefGoogle Scholar
  37. Wang, G. H., J. L. Su & P. C. Chu, 2003. Mesoscale eddies in the South China Sea observed with altimetry. Geophysical Research Letters 30(21): 2121, doi: 10.1029/2003GL018532.
  38. Yang, E. J., J. K. Choi & J. H. Hyun, 2004. Distribution and structure of heterotrophic protist communities in the northeast equatorial Pacific Ocean. Marine Biology 146: 1–15.CrossRefGoogle Scholar
  39. Yuan, L. Y., 2005. Distribution and characteristics of nutrients in the northern South China Sea. Xiamen University.Google Scholar
  40. Zhai, W. D., M. D. Dai, W. J. Cai, Y. C. Wang & Z. Wang, 2005. The partial pressure of carbon dioxide and air-sea fluxes in the northern South China Sea in spring, summer and autumn. Marine Chemistry 93: 21–32.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Bangqin Huang
    • 1
  • Wenlu Lan
    • 1
  • Zhenrui Cao
    • 1
  • Minhan Dai
    • 1
  • Lingfeng Huang
    • 2
  • Nianzhi Jiao
    • 1
  • Huasheng Hong
    • 1
  1. 1.State Key Laboratory of Marine Environmental Science, Environmental Science Research CenterXiamen UniversityXiamenChina
  2. 2.Department of OceanographyXiamen UniversityXiamenChina

Personalised recommendations