Skip to main content

Advertisement

Log in

Contrasting genetic structure of two Pacific Hymeniacidon species

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The geographic genetic structure of two common encrusting sponges, Hymeniacidon sinapium and Hymeniacidon flavia (family Halichondriidae), was investigated using two DNA markers, Internal Transcribed Spacers (ITS) of nuclear ribosomal DNA and NADH dehydrogenase subunit 5 (nad5) of mitochondrial DNA. In the ITS analyses, multiple sequence types were identified within each species. Geographic distribution patterns of sequence types showed higher diversity in the western than eastern areas in both species. However, intraspecific genetic diversity of the two species in Japan differed markedly. Hymeniacidon flavia had far more diverse sequence types, and several genetic differentiations between localities were detected. In contrast, H. sinapium had only four sequence types in Japan, and two Atlantic Hymeniacidon species had sequence types similar to this species. In comparison to ITS, nad5 showed very low genetic diversity in both species, with two haplotypes identified in each species. In H. flavia, frequency of haplotype changed gradually from north to south. In H. sinapium, one haplotype was predominant in most regions, and another haplotype was minor and distributed only in the Korean and Tsushima populations. Based on the unique distribution patterns of sequence types around Shikoku and Kyushu, geographical history and ocean currents were assumed to affect the generation of genetic structure. The geographic genetic structure of H. flavia suggests low dispersal ability of pelagic larvae, whereas higher larval dispersal ability and a far broader distribution range are suggested in H. sinapium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Avise, J. C., 2000. Phylogeography, the History and Formation of Species. Harvard University Press, Cambridge.

    Google Scholar 

  • Boury-Esnault, N., A. M. Sole-Cava & J. P. Thorpe, 1992. Genetic and cytological divergence between color morphs of the Mediterranean sponge Oscarella lobularis Schmidt (Porifera, Demospongiae, Oscarellidae). Journal of Natural History 26: 271–284.

    Article  Google Scholar 

  • Chombard, C., N. Boury-Esnault & S. Tillier, 1998. Reassessment of homology of morphological characters in tetractinellid sponges based on molecular data. Systematic Biology 47: 351–366.

    Article  PubMed  CAS  Google Scholar 

  • Clement, M., D. Posada & K. A. Crandall, 2000. TCS, a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1660.

    Article  PubMed  CAS  Google Scholar 

  • Collins, B., 2003. The TIMES Comprehensive Atlas of the World, 11th edn. Harper Collins, London.

    Google Scholar 

  • Crandall, K. A. & A. R. Templeton, 1993. Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134: 959–969.

    PubMed  CAS  Google Scholar 

  • Duran, S., M. Pascual, A. Estoup & X. Turon, 2002. Polymorphic microsatellite loci in the sponge Crambe crambe (Porifera: Poecilosclerida) and their variation in two distant populations. Molecular Ecology Notes 2: 478–480.

    Article  CAS  Google Scholar 

  • Duran, S., G. Giribet & X. Turon, 2004a. Phylogeographical history of the sponge Crambe crambe (Porifera, Poecilosclerida), range expansion and recent invasion of the Macronesian islands from the Mediterranean Sea. Molecular Ecology 13: 109–122.

    Article  PubMed  CAS  Google Scholar 

  • Duran, S., M. Pascual, A. Estoup & X. Turon, 2004b. Strong population structure in the marine sponge Crambe crambe (Poecilosclerida) as revealed by microsatellite markers. Molecular Ecology 13: 511–522.

    Article  PubMed  CAS  Google Scholar 

  • Duran, S., M. Pascual & X. Turon, 2004c. Low levels of genetic variation in mtDNA sequences over the western Mediterranean and Atlantic range of the sponge Crambe crambe (Poecilosclerida). Marine Biology 144: 31–35.

    Article  CAS  Google Scholar 

  • Evans, C. W., 1977. The ultrastructure of larvae from the marine sponge Halichondria moorei Bergquist (Porifera, Demospongiae). Cahiers de Biologie Marine 18: 427–433.

    Google Scholar 

  • Excoffier, L. G. L. & S. Schneider, 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.

    CAS  PubMed  Google Scholar 

  • Hooper, J. N. A. & R. W. M. van Soest, 2002. Systema Porifera: a guide to the classification of sponges. Plenum Publishers, New York.

    Google Scholar 

  • Horikoshi, M., Y. Nagata & T. Satou, 1987. Nature in Japan 7. Iwanami, Tokyo, Japan. 299 pp.

  • Hoshino, S., Y. Watanabe & M. Takeda, 2003. Systematic status of Halichondria japonica (Kadota) (Demospongiae, Halichondria) from Japan. Bollettino dei Musei e degli Istituti Biologici del l’Universita di Genova 68: 373–379.

    Google Scholar 

  • Jarman, S. N., R. D. War & N. G. Elliott, 2002. Oligonucleotide primers for PCR amplification of coelomate introns. Marine Biotechnology 4: 347–355.

    Article  PubMed  CAS  Google Scholar 

  • Jones, G. P., M. J. Milicich, M. J. Emslie & C. Lunow, 1999. Self-recruitment in a coral reef fish population. Nature 402: 802–804.

    Article  CAS  Google Scholar 

  • Klautau, M., C. A. M. Russo, C. Lazoski, N. Boury-Esnault, J. P. Thorpe & A. M. Sole-Cava, 1999. Does cosmopolitanism result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution 53: 1414–1422.

    Article  Google Scholar 

  • Kojima, S., R. Segawa & I. Hayashi, 1997. Genetic differentiation among populations of the Japanese turban shell Turbo (Batillus) cornutus corresponding to warm currents. Marine Ecology Progress Series 150: 149–155.

    Article  Google Scholar 

  • Kojima, S., R. Sagawa & I. Hayashi, 2000. Stability of the courses of the warm coastal currents along the Kyushu Islands suggested by the population structure of the Japanese Turban shell, Turbo (Batillus) cornutus. Journal of Oceanography 56: 601–604.

    Article  Google Scholar 

  • Kojima, S., I. Hayashi, D. Kim, A. Iijima & T. Furota, 2004. Phylogeography of an intertidal direct-developing gastropod, Batillaria cumingi, around the Japanese islands. Marine Ecology Progress Series 276: 161–172.

    Article  CAS  Google Scholar 

  • Lavrov, D. V. & B. F. Lang, 2005. Transfer RNA gene recruitment in mitochondrial DNA. Trends in Genetics 21: 129–133.

    Article  PubMed  CAS  Google Scholar 

  • Lavrov, D. V., L. Forget, M. Kelly & B. F. Lang, 2005. Mitochondrial genomes of two demosponges provide insights into an early stage of animal evolution. Molecular Biology and Evolution 22: 1231–1239.

    Article  PubMed  CAS  Google Scholar 

  • Lento, G. M., C. S. Baker, V. David, N. Yuhki, N. J. Gales & S. J. O’Brien, 2003. Automated single-strand conformation polymorphism reveals low diversity of a major histocompatibility complex class II gene in threatened New Zealand sea lion. Molecular Ecology Notes 3: 346–349.

    Article  CAS  Google Scholar 

  • Liao, D., 1999. Concerted evolution: molecular mechanism and biological implications. American Journal of Human Genetics 64: 24–30.

    Article  PubMed  CAS  Google Scholar 

  • Lobo-Hajdu, G., C. A. R. Guimaraes, A. Salgado, F. R. M. Lamaro, T. Vieiralves, J. J. Mansure & R. M. Albano, 2003. Intragenomic, intra- and interspecific variation in the rDNA ITS of Porifera revealed by PCR-single strand conformation polymorphism (PCR-SSCP). Bollettino dei Musei e degli Istituti Biologici dell’universita di Genova 68: 413–423.

    Google Scholar 

  • Maldonado, M., 2006. The ecology of the sponge larva. Canadian Journal of Zoology 84: 175–194.

    Article  Google Scholar 

  • Maldonado, M. & C. M. Young, 1996. Effects of physical factors on larval behavior, settlement and recruitment of four tropical demosponges. Marine Ecology Progress Series 138: 169–180.

    Article  Google Scholar 

  • Milligan, B., 1998. Total DNA isolation. In Hoelzel, A. R. (ed.), Molecular Genetic Analysis of Populations, a Practical Approach, 2nd edn. IRL Press, Oxford, 29–64.

    Google Scholar 

  • Muricy, G., A. Sole-Cava, J. P. Thorpe & N. Boury-Esnault, 1996. Genetic evidence for extensive cryptic speciation in the subtidal sponge Plakina trilopha (Porifera, Demospongiae, Homoscleromorpha) from the western Mediterranean. Marine Ecology Progress Series 138: 181–187.

    Article  Google Scholar 

  • Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Nei, M. & A. P. Rooney, 2005. Concerted and birth-and-death evolution of multigene families. Annual Review of Genetics 39: 121–152.

    Article  PubMed  CAS  Google Scholar 

  • Ohshima, K., 1990. The history of straits around the Japanese islands in the late-quaternary. The Quaternary Research 29: 193–208.

    Article  Google Scholar 

  • Park, M. H., C. J. Sim, J. Baek & G. S. Min, 2007. Identification of genes suitable for DNA barcoding of morphologically indistinguishable Korean Halichondriidae sponges. Molecules and Cells 23: 220–227.

    PubMed  CAS  Google Scholar 

  • Posada, D., K. A. Crandall & A. R. Templeton, 2000. GeoDis, a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Molecular Ecology 9: 487–488.

    Article  PubMed  CAS  Google Scholar 

  • Shanks, A. L., B. A. Grantham & M. H. Carr, 2003. Propagule dispersal distance and the size and spacing of marine reserves. Ecological Applications 13: S159–S169.

    Article  Google Scholar 

  • Shearer, T. L., M. J. van Oppen, S. L. Romano & G. Wörheide, 2002. Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Molecular Ecology 11: 2475–2487.

    Article  PubMed  CAS  Google Scholar 

  • Sim, C. J., 1985. A systematic study on the marine sponges from the South Sea and the Yellow Sea of Korea. Korean Journal of Systematic Zoology 1: 21–30.

    Google Scholar 

  • Sim, C. J. & G. J. Bakus, 1986. Marine sponges of Santa Catalina Island, California. Allan Hancock Foundation Publications. Occasional Papers 5: 1–23.

    Google Scholar 

  • Sim, C. J. & K. J. Le, 2003. A new species of the genus Hymeniacidon (Demospongiae, Halichondrida, Halichondriidae) from Korea. Korean Journal of Biological Sciences 7: 187–190.

    Google Scholar 

  • Sole-Cava, A. M. & J. P. Thorpe, 1986. Genetic differentiation between morphotypes of the marine sponge Suberites ficus (Demospongiae, Hadromerida). Marine Biology 93: 247–253.

    Article  Google Scholar 

  • Sole-Cava, A. M., M. Klautau, N. Boury-Esnault, R. Borojecic & J. P. Thorpe, 1991. Genetic evidence for cryptic speciation in an allopatric population of two cosmopolitan species of the calcareous sponge genus Clathrina. Marine Biology 111: 381–386.

    Article  Google Scholar 

  • Swearer, S. E., J. E Caselle, D. W. Lea & R. R. Warner, 1999. Larval retention and recruitment in an island population of a coral-reef fish. Nature 402: 799–802.

    Article  CAS  Google Scholar 

  • Tajima, F., 1983. Evolutionary relationship of DNA sequences in finite populations. Genetics 105: 437–460.

    PubMed  CAS  Google Scholar 

  • Templeton, A. R, 1998 Nested clade analysis of phylogeographical data, testing hypotheses about gene flow and population history. Molecular Ecology 7: 381–397.

    Article  PubMed  CAS  Google Scholar 

  • Templeton, A. R. & C. F. Sing, 1993. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analyses with cladogram uncertainty and recombination. Genetics 134: 659–669.

    PubMed  CAS  Google Scholar 

  • Templeton, A. R., E. Boerwinkle & C. F. Sing, 1987. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. I. Basic theory and an analysis of alcohol dehydrogenase activity in Drosophila. Genetics 117: 343–351.

    PubMed  CAS  Google Scholar 

  • Templeton, A. R., K. A. Crandall & C. F. Sing, 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132: 619–633.

    PubMed  CAS  Google Scholar 

  • Templeton, A. R., E. Routman & C. A. Phillips, 1995. Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140: 767–782.

    PubMed  CAS  Google Scholar 

  • Thorrold, S. R., C. Latkoczy, P. K. Swart & C. M. Jones, 2001. Natal homing in a marine fish metapopulation. Science 291: 297–299.

    Article  PubMed  CAS  Google Scholar 

  • Uriz, M. J., M. Maldonado, X. Turon & R. Marti, 1998. How do reproductive output, larval behavior, and recruitment contribute to adult spatial patterns in Mediterranean encrusting sponges? Marine Ecology Progress Series 167: 137–148.

    Article  Google Scholar 

  • van Oppen, M. J. H., G. Wörheide & M. Takabayashi, 2002. Nuclear markers in evolutionary and population genetic studies of scleractinian corals and sponges. In Moosa, K. (ed.), Proceedings of the 9th International Coral Reef Symposium, Bali, October 2000, Vol. 1, 131–138.

  • Woollacott, R. M., 1990. Structure and swimming behavior of the larva of Halichondria melanadocia (Porifera, Demospongiae). Journal of Morphology 205: 135–145.

    Article  Google Scholar 

  • Wörheide, G., 2006. Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Marine Biology 148: 907–912.

    Article  CAS  Google Scholar 

  • Wörheide, G., J. N. A. Hooper & B. M. Degnan, 2002. Phylogeography of western Pacific Leucettachagosensis’ (Porifera, Calcarea) from ribosomal DNA sequences: implications for population history and conservation of the Great Barrier Reef World Heritage Area (Australia). Molecular Ecology 11: 1753–1768.

    Article  PubMed  Google Scholar 

  • Wörheide, G., S. A. Nichols & J. Goldberg, 2004. Intragenomic variation of the rDNA internal transcribed spacers in sponges (phylum Porifera): implications for phylogenetic studies. Molecular Phylogenetics and Evolution 33: 816–830.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, D. X. & G. M. Hewitt, 2003. Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Molecular Ecology 12: 563–584.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Y. Ise, M.T. Ishikawa, Y. Kano, M. Mitsuhashi, and N. Hoshino for help with the sampling and members of the Department of Zoology, National Science Museum, Tokyo, for assistance with the laboratory work. We also thank H. Ueda for his advice and support. This study was supported by Sasakawa and the Research Institute of Marine Invertebrates to SH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayumi Hoshino.

Additional information

Handling editor: C. Sturmbauer

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2008_9295_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoshino, S., Saito, D.S. & Fujita, T. Contrasting genetic structure of two Pacific Hymeniacidon species. Hydrobiologia 603, 313–326 (2008). https://doi.org/10.1007/s10750-008-9295-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9295-2

Keywords